

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ & ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ: ΓΕΩΧΩΡΙΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ

ΓΕΩΜΕΤΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΑΕΡΟΤΡΙΓΩΝΙΣΜΟΥ ΛΗΨΕΩΝ ΑΠΟ UAV ΜΕ ΤΑΥΤΟΧΡΟΝΗ ΧΡΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΑΠΟ ΔΕΚΤΗ GNSS

Μεταπτυχιακή Διπλωματική Εργασία

Νικολακάκης Στυλιανός (Α.Μ.1619)

<u>Τριμελής επιτροπή :</u>

Γραμματικόπουλος Λάζαρος, Επίκουρος Καθηγητής ΠΑ.Δ.Α. (Επιβλέπων) Πέτσα Έλλη, Καθηγήτρια ΠΑ.Δ.Α. Καρράς Γεώργιος, Ομότιμος Καθηγητής Ε.Μ.Π.

ΑΘΗΝΑ, ΙΟΥΛΙΟΣ 2021

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ & ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ: ΓΕΩΧΩΡΙΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ

ΓΕΩΜΕΤΡΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΑΕΡΟΤΡΙΓΩΝΙΣΜΟΥ ΛΗΨΕΩΝ ΑΠΟ UAV ΜΕ ΤΑΥΤΟΧΡΟΝΗ ΧΡΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΑΠΟ ΔΕΚΤΗ GNSS

Μεταπτυχιακή Διπλωματική Εργασία

Νικολακάκης Στυλιανός (Α.Μ.1619)

<u>Επιβλέπων</u>

Γραμματικόπουλος Λάζαρος

Επιτροπή αξιολόγησης

Πέτσα Έλλη

Καρράς Γεώργιος

Δήλωση συγγραφέα Μεταπτυχιακής Εργασίας

Ο κάτωθι υπογεγραμμένος Νικολακάκης Στυλιανός του Ιωάννη, με αριθμό μητρώου 1619, σπουδαστής του Προγράμματος Μεταπτυχιακών Σπουδών «Γεωχωρικές Τεχνολογίες» του Τμήματος Μηχανικών Τοπογραφίας και Γεωπληροφορικής της Σχολής Μηχανικών του Πανεπιστημίου Δυτικής Αττικής, δηλώνω ότι:

«Είμαι συγγραφέας αυτής της μεταπτυχιακής εργασίας και ότι κάθε βοήθεια την οποία είχα για την προετοιμασία της, είναι πλήρως αναγνωρισμένη και αναφέρεται στην εργασία. Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέζεων, είτε ακριβώς είτε παραφρασμένες, αναφέρονται στο σύνολό τους, με πλήρη αναφορά στους συγγραφείς, τον εκδοτικό οίκο ή το περιοδικό, συμπεριλαμβανομένων και των πηγών που ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο δικής μου, όσο και του Ιδρύματος.

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την ανάκληση του πτυχίου μου».

Ο Δηλών

Ευχαριστίες

Θα ήθελα να ευχαριστήσω μέσα από την καρδιά μου τον επιβλέποντα της παρούσας διπλωματικής εργασίας, Επίκουρο Καθηγητή Λάζαρο Γραμματικόπουλο, για την εμπιστοσύνη, την κατανόηση και την υπομονή του κατά το διάστημα υλοποίησης της εργασίας μου. Επίσης, θα ήθελα να τον ευχαριστήσω για την ευκαιρία που μου έδωσε να ασχοληθώ με το συγκεκριμένο θέμα καθώς και για την αστείρευτη προθυμία του και τις πολύτιμες συμβουλές του.

Θα ήθελα, ακόμη, να ευχαριστήσω τον κύριο Στέλιο Καλατζή για την διάθεση του UAV Air Surveyor 4, που αποτέλεσε το κύριο εργαλείο της έρευνας, τον συνάδελφο Τοπογράφο Μηχανικό Ευάγγελο Θεοδωράκη για την διάθεση του UAV Phantom 4 pro V2 καθώς και τον Τζανιδάκη Χρήστο ιδιοκτήτη του χώρου που έλαβαν χώρα οι πτήσεις.

Επιπλέον, θα ήθελα να ευχαριστήσω όλους τους καθηγητές του Π.Μ.Σ «Γεωχωρικές Τεχνολογίες» για την άριστη συμπεριφορά τους προς τους μεταπτυχιακούς σπουδαστές καθώς και για την προσπάθειά τους σε όλο τους το έργο.

Τέλος, θα ήθελα να ευχαριστήσω θερμά τη γυναίκα μου, Αλεξάνδρα Μίσκου, για την αμέριστη συμπαράστασή της και την κατανόησή της καθ' όλη τη διάρκεια των μεταπτυχιακών σπουδών μου και της εκπόνησης της διπλωματικής μου εργασίας.

Περίληψη

Στόχος της παρούσας έρευνας είναι η γεωμετρική διερεύνηση και αξιολόγηση του αεροτριγωνισμού λήψεων από UAV με ταυτόχρονη χρήση παρατηρήσεων από δέκτη GNSS. Στην έρευνα συμμετείχαν 3 UAV, δύο εκ των οποίων έφεραν δέκτη GPS πλοήγησης και ένα έφερε διπλόσυχνο δέκτη GPS. Υλοποιήθηκαν συνολικά 15 πτήσεις με τα UAV, εκ των οποίων οι 10 πτήσεις είχαν κάμερα σε κατακόρυφη θέση και οι 5 πτήσεις είχαν κάμερα σε πλάγια θέση με κλίση 30°. Έγιναν 61 διαφορετικές επιλύσεις αεροτριγωνισμού, συμπεριλαμβανομένων επιλύσεων με χρήση μόνο φωτοσταθερών σημείων, επιλύσεις με συνδυασμένη χρήση φωτοσταθερών σημείων και θέσεων λήψης αεροφωτογραφιών καθώς και επιλύσεις μόνο από τις θέσεις λήψης των αεροφωτογραφιών. Σύμφωνα με τα αποτελέσματα της έρευνας αυτής, η επίλυση του αεροτριγωνισμού μόνο από τις θέσεις λήψεις των αεροφωτογραφιών (περίπτωση διπλόσυχνου δέκτη GPS) έδωσε αποτελέσματα που κυμαίνονται οριζοντιογραφικά στο εύρος 2 cm – 4 cm (ίδιας οριζοντιογραφικής ακρίβειας με τη χρήση φωτοσταθερών) και υψομετρικά στα 11 cm – 16 cm.

Λέξεις – κλειδιά: SfM, Άμεση Γεωαναφορά, Αεροτριγωνισμός, UAV, Φωτοσταθερά

Geometric Investigation and Evaluation of Aerial Triangulation Based on UAV Imagery and GNSS Observations

by Stylianos Nikolakakis

Postgraduate Diploma Thesis

M.Sc. Course: "Geospatial Technologies" Department of Surveying and Geoinformatics Engineering University of West Attica, Athens, Greece

July 2021

Abstract

The main objective of this research is the geometric investigation and evaluation of the aerotriangulation of UAV images with the simultaneous use of observations from a GNSS receiver. The research involved 3 UAV, two of which had a navigation GPS receiver and one had a dual frequency GPS receiver. A total of 15 flights were carried out with UAV, of which 10 flights had the camera in a vertical position and 5 flights with the camera inclined by 30°. There were 61 different solutions of aerotriangulation, including solutions using only ground control points, solutions using a combination of ground control points and aerial photo positions, as well as solutions using only aerial photo positions. The results from aerotriangulations using only the aerial photo positions (case of dual frequency GPS receiver) ranged horizontally from 2 cm to 4 cm (same horizontal accuracy with the use of ground control points) and vertically from 11 cm to 16 cm.

Keywords: SfM, Direct Georeferencing, Aerotriangulation, UAV, Ground Control Points

Περιεχόμενα

Εισαγωγή	1
КЕФАЛАІО 1	3
1.1. Ορισμός της Φωτογραμμετρίας	3
1.2. Η Ταξινόμηση της Φωτογραμμετρίας	5
1.3. Τα πλεονεκτήματα και τα μειονεκτήματα της Φωτογραμμετρίας	6
1.4. Βασικά βήματα φωτογραμμετρικής διαδικασίας	7
1.5. Εσωτερικός προσανατολισμός	9
1.6. Εζωτερικός προσανατολισμός	10
1.7. Φωτοσταθερά σημεία	12
1.8. Αεροτριγωνισμός	12
1.8.1. Συνδυασμένη επίλυση αεροτριγωνισμού	13
1.8.2. Κύρια προβλήματα	14
1.8.3. Πλεονεκτήματα – μειονεκτήματα μεθόδου	15
1.9. Συστήματα μη επανδρωμένων οχημάτων, μη επανδρωμένα εναέρι drones	α οχήματα και 15
1.10.Πεδίο Εφαρμογής UAV	
1.11. Πλεονεκτήματα - Μειονεκτήματα χρήσης UAV	19
1.12. Διαδικασία Φωτογραμμετρίας SfM και Άμεση Γεωαναφορά σε ει UAV	κόνες από 20
КЕФАЛАІО 2	25
2.1. Περιοχή μελέτης	25
2.2 Εξοπλισμός	
2.3. Τδρυση φωτοσταθερών	
2.4. Αποτύπωση φωτοσταθερών	
2.5. Σχεδιασμός - Υλοποίηση Πτήσεων	
2.6. Επεξεργασία πρωτογενών δεδομένων	
2.7. Επιλύσεις πτήσεων	
2.8. Σφάλμα εκκεντρότητας UAV Air Surveyor 4	
2.9. Πίνακες στοιχείων πτήσεων, αποτελέσματα επιλύσεων	
ΚΕΦΑΛΑΙΟ 3	55
3.1. Ανάλυση Αποτελεσμάτων Επιλύσεων	55
3.1.1.UAV Air Surveyor 4	55
3.1.2.UAV Phantom 4 pro V2	64

3.1.3.UAV Parrot Anafi	
3.2. Σχολιασμός Αποτελεσμάτων Επιλύσεων	70
ΚΕΦΑΛΑΙΟ 4	81
4.1. Συμπεράσματα	81
4.2. Προτάσεις	
Βιβλιογραφία	
Παράρτημα Τεχνικών Προδιαγραφών Εξοπλισμού	

Εισαγωγή

Σκοπός της παρούσας Διπλωματικής Εργασίας είναι η διερεύνηση της ακρίβειας προσανατολισμού μέσω της μεθόδου δέσμης ενός συνόλου αεροφωτογραφιών που λαμβάνονται από UAV (μη επανδρωμένο αεροσκάφος) με ταυτόχρονες μετρήσεις από δέκτη GNSS, χωρίς την ανάγκη μέτρησης φωτοσταθερών σημείων. Συγκεκριμένα, εξετάζεται η γεωμετρική ακρίβεια του αεροτριγωνισμού με την μέθοδο της δέσμης μόνο με παρατηρήσεις α) των συντεταγμένων των ομόλογων σημείων (σημείων σύνδεσης) στις εικόνες και β) των μετρήσεων ενός δέκτη GPS/GNSS που έχει τοποθετηθεί στο UAV και καταγράφει τη θέση του (X, Y, Z) κατά την διάρκεια της πτήσης. Η εν λόγω φωτογραμμετρική διαδικασία αποτελεί ένα βήμα πριν από την μέθοδο της Άμεσης Γεωναναφοράς (Direct Georeferencing) των εικόνων, με την τελευταία να επιτρέπει τον απευθείας προσδιορισμό των έζι παραμέτρων του εξωτερικού προσανατολισμού της μηχανής (θέση και στροφές) μέσω μετρήσεων από δορυφορικό δέκτη GNSS (υπολογισμός θέσης) και αδρανειακό σύστημα πλοήγησης INS (υπολογισμός στροφών).

Η εν λόγω μέθοδος προσανατολισμού πλεονεκτεί ως προς την οικονομικότητα έναντι της κλασικής μεθόδου όπου απαιτείται η μέτρηση συχνά μεγάλου πλήθους φωτοσταθερών σημείων.

Για την έρευνα αυτή χρησιμοποιήθηκαν συνολικά τρία μη επανδρωμένα αεροσκάφη (UAV), δύο εκ των οποίων (UAV DJI Phantom 4 proV2 της εταιρείας DJI και UAV Anafi της εταιρείας Parrot) φέρουν μονόσυχνο δέκτη μέτρησης GPS, ενώ το τρίτο (UAV Air Surveyor 4 της εταιρείας Drone Services) διαθέτει δέκτη GPS διπλής συχνότητας.

Υλοποιήθηκαν συνολικά 15 πτήσεις εκ των οποίων οι 10 πτήσεις είχαν την κάμερα σε κατακόρυφη θέση και οι 5 πτήσεις είχαν την κάμερα σε πλάγια θέση με κλίση 30°. Έγιναν 61 διαφορετικές επιλύσεις αεροτριγωνισμού, συμπεριλαμβανομένων των επιλύσεων με χρήση μόνο φωτοσταθερών σημείων (χωρίς τις παραμέτρους του GPS), επιλύσεων με συνδυασμένη χρήση φωτοσταθερών σημείων και θέσεων λήψης αεροφωτογραφιών καθώς και επιλύσεων μόνο από τις θέσεις λήψης των αεροφωτογραφιών.

Η παρούσα εργασία διαρθρώνεται σε τέσσερα κεφάλαια. Στο πρώτο κεφάλαιο γίνεται μια συνοπτική εισαγωγή στην Φωτογραμμετρία, τις βασικές αρχές της καθώς και τα βασικά βήματα της φωτογραμμετρικής επίλυσης.

Στο δεύτερο κεφάλαιο αναλύεται η περιοχή μελέτης, ο εξοπλισμός που χρησιμοποιήθηκε, η μεθοδολογία που ακολουθήθηκε και τα στοιχεία των επιλύσεων των επιμέρους πτήσεων.

Στο τρίτο κεφάλαιο παρατίθενται και αξιολογούνται τα αποτελέσματα των επιλύσεων κάθε επιμέρους πτήσης καθώς και των συνδυασμών τους.

Στο τέταρτο και τελευταίο κεφάλαιο αναφέρονται τα συμπεράσματα που προκύπτουν από τις επιλύσεις των πτήσεων, καθώς και προτάσεις για περαιτέρω διερεύνηση.

ΚΕΦΑΛΑΙΟ 1

1.1. Ορισμός της Φωτογραμμετρίας

Ο όρος Φωτογραμμετρία (Photogrammetry) προέρχεται από τη σύνθεση των ελληνικών λέξεων φως, γραμμή και μέτρηση. Από την ετυμολογία της ίδιας της λέξης μπορεί να γίνει μια πρώτη προσέγγιση – ερμηνεία αυτού του επιστημονικού πεδίου ως εκείνου που ασχολείται με την μέτρηση ενός αντικειμένου μέσω των προβολών του (φωτογραφική απεικόνιση). Αναφορικά με τους επιστημονικούς ορισμούς του όρου, σύμφωνα με την Αμερικανική Εταιρεία Φωτογραμμετρίας και Τηλεπισκόπησης (ASPRS, 2005), η Φωτογραμμετρία είναι η επιστήμη και η τεχνολογία που ασχολείται με την απόκτηση αξιόπιστων πληροφοριών σχετικά με τα φυσικά αντικείμενα και το περιβάλλον μέσω διαδικασιών καταγραφής, μέτρησης και ερμηνείας φωτογραμμετρίας και Τηλεπισκόπησης Σε σύμπνοια με τον παραπάνω ορισμό, η Διεθνής Εταιρεία Φωτογραμμετρίας και Τηλεπισκόπησης και προτύπων καταγραφόμενων ακτινοβολιών ηλεκτρομαγνητικής ενέργειας. Σε σύμπνοια με τον παραπάνω ορισμό, η Διεθνής Εταιρεία Φωτογραμμετρίας και Τηλεπισκόπησης (ISPRS, 2016) όρισε μερικά χρόνια αργότερα τη Φωτογραμμετρία ως την επιστήμη και την τεχνολογία που, μέσω ενός συνόλου τεχνικών, αποσκοπεί στην εξαγωγή αξιόπιστων τρισδιάστατων γεωμετρικών πληροφοριών για έναν χώρο ή ένα αντικείμενο από μετρήσεις και δεδομένα από εικόνες.

Με άλλα λόγια, η Φωτογραμμετρία είναι ουσιαστικά μια μέθοδος προσδιορισμού των διαστάσεων, του σχήματος και της θέσης των αντικειμένων και του περιβάλλοντος με τη χρήση εικόνων (Πέτσα, 2000). Στη μέθοδο αυτή, το αντικείμενο καταγράφεται σε φωτοευαίσθητη επιφάνεια μέσω της χρήσης μιας κατάλληλης φωτογραφικής μηχανής ή κάποιου άλλου συστήματος απεικόνισης, στο οποίο η παραγόμενη εικόνα μετρείται προκειμένου να προσδιοριστεί, να απεικονιστεί ή να ψηφιοποιηθεί αυτό το αντικείμενο (Şeker & Duran, 2015). Η στενή σχέση της Φωτογραμμετρίας με τη φωτογραφία και την κάμερα καθιστά σαφή την επιρροή και τη διαμόρφωση των φωτογραμμετρικών τεχνικών από τη συνεχόμενη τεχνολογική εξέλιξη της ψηφιακής πληροφορίας.

Επιπροσθέτως, η Φωτογραμμετρία έχει μεγάλη σχέση με αντίστοιχες επιστήμες συλλογής πρωτογενών δεδομένων, όπως η Τοπογραφία και η Γεωδαισία. Η ειδοποιός διαφορά τους, ωστόσο, έγκειται στο γεγονός ότι οι φωτογραμμετρικές τεχνικές δεν χρησιμοποιούν απευθείας μετρήσεις πάνω στο αντικείμενο αλλά τη μετρική πληροφορία που συλλέγεται πάνω σε μια εικόνα. Γι' αυτό το λόγο, οι τεχνικές αυτές αποτελούν έμμεσους τρόπους καταγραφής των ποσοτικών και ποιοτικών χαρακτηριστικών των αντικειμένων με βάση εικόνες (Πατιάς, 1991). Η "ποιοτική" περιγραφή των χαρακτηριστικών των αντικειμένων, όπως για παράδειγμα η ένταση, ο χρωματικός τόνος και η υφή, επιτυγχάνεται μέσω της παρατήρησης των φωτογραφικών χαρακτηριστικών της εικόνας. Τα "ποσοτικά" χαρακτηριστικά των αντικειμένων, όπως ο ακριβής προσδιορισμός της θέσης του αντικειμένου στον τρισδιάστατο χώρο σε σχέση με άλλα αντικείμενα, ή σε σχέση με ένα σύστημα αναφοράς, και ο ακριβής προσδιορισμός γεωμετρικών στοιχείων, όπως μήκη, πλάτη, ύψη και γωνίες, καθορίζονται μέσω μετρούμενων θέσεων στο επίπεδο της εικόνας της κάμερας που λαμβάνει τη φωτογραφία (U. A. C. O., 2002).

Η Φωτογραμμετρία στηρίζεται στις ακόλουθες βασικές αρχές:

- Υποθέτει ότι η κάμερα παράγει ένα τέλειο σημείο ως κέντρο προβολής
- Δεν πρέπει να υπάρχει απόκλιση των ακτίνων φωτός που διέρχονται από το φακό της κάμερας
- Το μέσον της εικόνας στο εστιακό επίπεδο της φωτογραφικής μηχανής θα πρέπει να είναι μια άκαμπτη επίπεδη επιφάνεια
- Η μαθηματική σχέση μεταξύ αντικειμένου και εικόνας εκφράζεται με την αρχή
 της συγγραμμικότητας
- Η αρχή της συγγραμμικότητας υιοθετεί έξι βαθμούς ελευθερίας της κάμερας:
 τρεις μεταθέσεις και τρεις στροφές
- Οι αποκλίσεις από το κέντρο προβολής μπορούν να μοντελοποιηθούν ως συστηματικό σφάλμα στην κατάσταση συγγραμμικότητας (Şeker & Duran, 2015).
 Οι εφαρμογές της Φωτογραμμετρίας στις μέρες μας είναι πολλαπλές. Ενδεικτικά αναφέρονται οι εξής:
 - γεωλογία (στρωματογραφικές και γεωμορφολογικές μελέτες, σχεδιασμός γεωλογικών χαρτών, καταγραφή ζημιών από σεισμό)
 - δασολογία (σύνταξη δασικών χαρτών, διαχείριση πυρκαγιών)
 - γεωργία (προσδιορισμός τύπων εδαφών, οριοθέτηση καλλιεργούμενων εκτάσεων)
 - κατασκευές (χωροθέτηση έργων, μελέτη και κατασκευή τεχνικών έργων)
 - οδοποιία (χάραξη δρόμων)
 - πολεοδομία (πράξεις εφαρμογής)
 - κτηματολόγιο (σύνταξη κτηματολογικών χαρτών)
 - 4

- αρχαιολογία (αποτύπωση αρχαιολογικών χώρων και μνημείων πολιτιστικής κληρονομιάς)
- αρχιτεκτονική (αποτύπωση κτιρίων και συνόλων)
- τοπογραφία (σύνταξη τοπογραφικών διαγραμμάτων και χαρτών, γεωμετρική τεκμηρίωση κτιρίων και μνημείων πολιτιστικής κληρονομιάς)
- στρατιωτικές εφαρμογές (αναγνωρίσεις, σχεδιασμός στρατιωτικών κινήσεων).

1.2. Η Ταξινόμηση της Φωτογραμμετρίας

Η Φωτογραμμετρία, ανάλογα με τον τύπο της εικόνας, τον τρόπο λήψης και τον τρόπο χρήσης της, διακρίνεται σε επιμέρους κατηγορίες. Ειδικότερα, ανάλογα με τη θέση λήψης της εικόνας η Φωτογραμμετρία διακρίνεται σε Εναέρια Φωτογραμμετρία και σε Επίγεια Φωτογραμμετρία. Η Εναέρια Φωτογραμμετρία αφορά τις αεροφωτογραφίες, ενώ στην Επίγεια Φωτογραμμετρία ο σταθμός λήψης φωτογραφιών βρίσκεται στο έδαφος. Επιπλέον, με βάση τον τρόπο λήψης της φωτογραφίας διακρίνονται κατακόρυφες, κεκλιμένες και πλάγιες λήψεις, ενώ ανάλογα με τον τρόπο επεξεργασίας και απόδοσης της πληροφορίας η Φωτογραμμετρία ιστορικά διακρίνεται σε Αναλογική, Αναλυτική και Ψηφιακή Φωτογραμμετρία. Στην Αναλογική Φωτογραμμετρία χρησιμοποιούνταν οπτικο-μηχανικά μέσα για την εξαγωγή της θέσης σε τρεις διαστάσεις ενός αντικειμένου που απεικονίζεται σε στερεοζεύγος φωτογραφιών που έχουν ληφθεί από διαφορετικές θέσεις. Στην Αναλυτική Φωτογραμμετρία ο προσδιορισμός στον τρισδιάστατο χώρο της θέσης των λεπτομερειών των αντικειμένων γινόταν με υπολογιστικά μέσα και χρησιμοποιούνταν ηλεκτρονικοί υπολογιστές ώστε να υπολογιστούν οι παράμετροι των αναλογικών εικόνων και των προσανατολισμών τους. Τέλος, στην Ψηφιακή Φωτογραμμετρία η επεξεργασία επικεντρώνεται στις ψηφιακές εικόνες, οι οποίες είναι αποθηκευμένες σε ψηφιακά μέσα αποθήκευσης και, με τη χρήση υπολογιστικών μέσων, γίνεται η επεξεργασία όχι μόνο του ορατού φάσματος της ηλεκτρομαγνητικής ακτινοβολίας αλλά και άλλων προτύπων της, όπως των υπέρυθρων ακτίνων (Πατιάς, 1991, Şeker & Duran, 2015).

Στις μέρες μας, πλέον, η περαιτέρω ανάπτυξη της τεχνολογίας δείχνει ότι η Φωτογραμμετρία βρίσκεται στο επόμενο στάδιο εξέλιξής της. Πιο συγκεκριμένα, η ραγδαία ανάπτυξη της τεχνολογίας σε συνδυασμό με την πληθώρα δυνατοτήτων που προσφέρει η Όραση Υπολογιστών (Computer Vision) – ένα από τα πιο γρήγορα εξελισσόμενα πεδία της επιστήμης των υπολογιστών – καθιστά εφικτή, με τη χρήση ψηφιακών εικόνων, την αυτόματη παραγωγή πλήρως τρισδιάστατων αντικειμένων όσο και ορθοφωτογραφιών. Η ανάπτυξη αυτή συμβάλλει, επιπλέον, στη δημιουργία κατάλληλων λογισμικών, τα οποία έχουν τη δυνατότητα να επεξεργάζονται μεγάλο αριθμό εικόνων και να παράγουν προϊόντα υψηλής ανάλυσης και ακριβείας, με τις περισσότερες μάλιστα διαδικασίες παραγωγής να πραγματοποιούνται αυτόματα χωρίς την παρέμβαση του χρήστη.

1.3. Τα πλεονεκτήματα και τα μειονεκτήματα της Φωτογραμμετρίας

Όπως προαναφέρθηκε, οι φωτογραμμετρικές τεχνικές αποτελούν έμμεσους τρόπους καταγραφής των ποσοτικών και ποιοτικών πληροφοριών ενός αντικειμένου. Οι έμμεσες αυτές μετρήσεις δημιουργούν τα πλεονεκτήματα και τα μειονεκτήματα της Φωτογραμμετρίας εν συγκρίσει με αντίστοιχους επιστημονικούς κλάδους. Πιο αναλυτικά, ένα σημαντικό πλεονέκτημα της Φωτογραμμετρίας είναι η ταχύτητα παραγωγής χαρτών, διαδικασία η οποία είναι χρονοβόρα με άλλες μεθόδους επίγειων μετρήσεων. Επιπλέον, στενά συνυφασμένος παράγοντας με την ταχύτητα είναι και το μειωμένο κόστος που εξασφαλίζεται με τη χρήση φωτογραμμετρικών μεθόδων έναντι άλλων, ειδικά όταν πρόκειται για μαζική χαρτογράφηση μεγάλων εκτάσεων. Ένα εξίσου σημαντικό πλεονέκτημα των φωτογραμμετρικών μετρήσεων είναι η δυνατότητα εφαρμογής τους σε περιπτώσεις "δύσκολων" ή απροσπέλαστων εδαφών, όπως για παράδειγμα απόκρημνα μέρη, περιοχές πυκνής βλάστησης, έρημοι. Τέλος, σημαντικό πλεονέκτημα των φωτογραμμετρικών έναντι των επίγειων μετρήσεων είναι το εύρος των πληροφοριών που αποτυπώνονται σε μια εικόνα. Συγκεκριμένα, η φωτογραφία αποτελεί μία συνεχή απεικόνιση του φυσικού κόσμου και μπορεί να αποδοθεί σαν τέτοια, ενώ οι επίγειες μετρήσεις έχουν ως σκοπό τον προσδιορισμό των συντεταγμένων διακριτών σημείων λεπτομερειών, καθιστώντας την αποτύπωση των λεπτομερειών της όψης ενός κτιρίου, παραδείγματος χάριν, ιδιαιτέρως δύσκολη (Πατιάς, 1991).

Επιμέρους σημαντικά πλεονεκτήματα των φωτογραμμετρικών μετρήσεων είναι τα εξής:

- Η ανακατασκευή της γεωμετρίας του αντικειμένου στον χώρο γίνεται μέσω συνεχούς απόδοσης ή/και σημειακής
- Δεν υπάρχει ανάγκη σχεδίων πεδίου (σκαριφήματα κροκί)
- Η αποτύπωση θεωρείται αντικειμενική
- Ορίζεται σύστημα αναφοράς

- Υπάρχει δυνατότητα επιστημονικού ελέγχου του αποτελέσματος ως προς την ακρίβεια και την αξιοπιστία
- Αντιμετωπίζονται άμεσα λεπτομέρειες και σύνθετα αρχιτεκτονικά ή δύσκολα προσπελάσιμα στοιχεία
- Υπάρχει δυνατότητα αξιοποίησης των νέων σχεδιαστικών τεχνολογιών (π.χ. CAD), της ψηφιακής τεχνολογίας επεξεργασίας εικόνας (image processing) και των τεχνικών ψηφιακής τεκμηρίωσης (αλφαριθμητικά, γραφικά και εικόνες).

Αναφορικά με τα μειονεκτήματα των φωτογραμμετρικών μετρήσεων, ένα από τα πιο σημαντικά είναι οι πολλές πηγές σφαλμάτων (κάμερες, φακοί, παραμόρφωση φωτοευαίσθητης επιφάνειας, μετρήσεις με GPS), γεγονός που καθιστά την επεξεργασία των δεδομένων πιο σύνθετη, με αποτέλεσμα να είναι πιθανό το τελικό προϊόν να έχει μικρότερη ακρίβεια. Τέλος, καθώς οι φωτογραμμετρικές μετρήσεις χρειάζεται να βασίζονται σε κάποια ήδη υπάρχουσα πληροφορία, τα αποτελέσματά τους εξαρτώνται από αποτελέσματα προηγούμενων επίγειων μετρήσεων, δημιουργώντας την ανάγκη για πρόσθετες εργασίες της τοπογραφικής μεθόδου (Πατιάς, 1991).

1.4. Βασικά βήματα φωτογραμμετρικής διαδικασίας

Ακολουθούν τα βασικά βήματα της φωτογραμμετρικής διαδικασίας, καθώς και τα απαραίτητα εργαλεία για την υλοποίησή της. Τα βασικά βήματα της φωτογραμμετρικής διαδικασίας απεικονίζονται σχηματικά στην Εικόνα 1.

Αρχικά γίνεται ο σχεδιασμός της φωτογραμμετρικής διαδικασίας. Ειδικότερα, κατά το σχεδιασμό γίνεται η επιλογή του εξοπλισμού (hardware), του λογισμικού (software) και της διαδικασίας που θα ακολουθηθεί, ώστε να επιτευχθεί το επιθυμητό αποτέλεσμα.

Έπειτα, γίνεται η συλλογή των δεδομένων (επίγειες - εναέριες εικόνες) καθώς και των πρωτογενών δεδομένων καταγραφής από τους δέκτες GPS (GPS UAV - GPS επίγειου δέκτη σε περιπτώσεις εναέριων λήψεων).

Στη συνέχεια, κατά το επόμενο στάδιο γίνεται η επεξεργασία των δεδομένων, που αφορά την επεξεργασία των εικόνων, την επεξεργασία των πρωτογενών δεδομένων, τον υπολογισμό των σημείων του χώρου, καθώς και των γεωδαιτικών συντεταγμένων τους κ.λπ. Για την επεξεργασία των δεδομένων χρησιμοποιούνται σταθμοί εργασίας ή κοινοί ηλεκτρονικοί υπολογιστές με τη συνδρομή κατάλληλου λογισμικού. Η απόκτηση του ψηφιακού αρχείου με τα παραγόμενα φωτογραμμετρικά προϊόντα, τα οποία μπορεί να είναι γραφικά, αριθμητικά, φωτογραφικά και άλλα, αποτελεί το τελευταίο στάδιο της φωτογραμμετρικής διαδικασίας. Το ψηφιακό αυτό αρχείο μπορεί να αποθηκευτεί και η διεργασία να ολοκληρωθεί ή τα αποκτηθέντα δεδομένα μπορούν να υποστούν περαιτέρω επεξεργασία για σκοπούς όπως ο σχεδιασμός χαρτών και η ψηφιακή απεικόνιση δεδομένων.

Εικόνα Ι. Βασικά βήματα φωτογραμμετρικής διαδικασίας (Πέτσα, 2000).

1.5. Εσωτερικός προσανατολισμός

Εσωτερικός προσανατολισμός ονομάζεται η διαδικασία κατά την οποία αποκαθίσταται η πορεία της φωτεινής ακτίνας κατά τη στιγμή της λήψης. Με άλλα λόγια, ο εσωτερικός προσανατολισμός αναφέρεται στην εσωτερική γεωμετρία της φωτομηγανής και τη διαστροφή του φακού κατά τη στιγμή της λήψης της κάθε εικόνας. Ο εσωτερικός προσανατολισμός μιας εικόνας ουσιαστικά αποτελεί μια διαδικασία ανάπλασης της δέσμης των ακτίνων που δημιούργησε την εικόνα. Αποτελεί, δηλαδή, τη διαδικασία εύρεσης ως προς το επίπεδο της εικόνας, της θέσης ενός (θεωρητικού) σημείου λήψης, έτσι ώστε η σύνδεση του σημείου αυτού με όλα τα εικονοσημεία να αναπαράγει τη σωστή δέσμη ακτίνων. Ο προσδιορισμός των παραμέτρων του εσωτερικού προσανατολισμού ονομάζεται βαθμονόμηση μηχανής (camera calibration) και αποτελεί τη διαδικασία εύρεσης της διαφοράς που έχει η γεωμετρία της εικόνας σε μια φωτογραφική κάμερα σε σχέση με την αντίστοιχη αυστηρή γεωμετρία μιας κεντρικής προοπτικής προβολής. Για την μετατροπή των συντεταγμένων από το σύστημα του φωτογραφικού επιπέδου στο σύστημα της εικόνας είναι απαραίτητος ο προσδιορισμός του κέντρου προβολής στο φωτογραφικό επίπεδο (Ο΄), δηλαδή ο προσδιορισμός του πρωτεύντος σημείου (Η') της εικόνας.

Οι παράμετροι x₀, y₀ και c που ορίζουν το κέντρο προβολής, αποτελούν τα πρωτεύοντα στοιχεία του εσωτερικού προσανατολισμού της δέσμης (Καρράς, 1992).

Εικόνα 2. Βασικές παράμετροι εσωτερικού προσανατολισμού (Πέτσα, 2000).

Η βαθμονόμηση της μηχανής γίνεται είτε εργαστηριακά (από τον κατασκευαστή της μηχανής) είτε με βαθμονόμηση πεδίου (μετρήσεις σε πεδίο ελέγχου με συνόρθωση σημείων με γνωστές γεωδαιτικές συντεταγμένες). Η βαθμονόμηση της φωτομηχανής αποσκοπεί στην αντιστάθμιση των διαστροφών του φακού καθώς και στην

εκτίμηση της σταθερότητας και λειτουργίας της (Kraus,1993, Μωυσιάδης, 2015, Πατιάς, 1991, Ziemann & El-Halkim, 1982).

1.6. Εξωτερικός προσανατολισμός

Η γνώση του εσωτερικού προσανατολισμού επιτρέπει τη γεωμετρική ανακατασκευή της δέσμης των προβολικών ακτίνων, η οποία βέβαια θα πρέπει εν συνεχεία να ενταχθεί στο σύστημα του χώρου (γεωδαιτικό σύστημα) (Πέτσα, 2000).

Οι βαθμοί ελευθερίας του εξωτερικού προσανατολισμού είναι έξι, δηλαδή οι τρεις μεταθέσεις (μία ανά άξονα) X_o, Y_o, Z_o, καθώς και τρεις στροφές (μία ανά άξονα) ω, φ, κ. Η γνώση του εξωτερικού προσανατολισμού επιτρέπει να αποκατασταθεί η θέση και ο προσανατολισμός της δέσμης στο χώρο. Ο εξωτερικός προσανατολισμός επιτυγχάνεται είτε απευθείας είτε με τον σχετικό και τον απόλυτο προσανατολισμό (Μωυσιάδης, 2015, Πατιάς, 1991).

Σχετικός προσανατολισμός ονομάζεται η διαδικασία κατά την οποία οι δύο επικαλυπτόμενες εικόνες ενός στερεοζεύγους σχετίζονται μεταξύ τους σε κάποιον αυθαίρετο χώρο και σε αυθαίρετη κλίμακα ώστε η σχέση αυτή να είναι η ίδια που υπήρχε κατά τη στιγμή λήψης. Ο σχετικός προσανατολισμός έχει ως στόχο την τομή όλων των ομόλογων ακτίνων δύο ή περισσότερων επικαλυπτόμενων εικόνων, έτσι ώστε να ευρίσκονται σε προβολική θέση (Πατιάς, 1991). Το αποτέλεσμα του σχετικού προσανατολισμού είναι η ορθή ανάπλαση του σχήματος ενός τρισδιάστατου μοντέλου σε αυθαίρετο χώρο και σε αυθαίρετη κλίμακα. Το σχετικά προσανατολισμένο ζεύγος έχει αυθαίρετη σχέση με το επίγειο σύστημα συντεταγμένων (Πατιάς, 1991).

Εικόνα 3. Δέσμες ομόλογων ακτινών σε προβολική θέση (Χατζόπουλος, 2015).

Για τον υπολογισμό του χρειάζεται ο προσδιορισμός πέντε παραμέτρων (ΔY_o , ΔZ_o , ω, φ, κ). Κατά το στάδιο επίλυσης του σχετικού προσανατολισμού, οι παράμετροι ΔY_o , ΔZ_o , ω, φ, κ (5 βαθμοί ελευθερίας, αφού η παράμετρος ΔX_o επιδρά μόνο στην κλίμακα του μοντέλου) εκφράζουν τις 5 κινήσεις των ομόλογων δεσμών για να επιτευχθεί η αλληλοτομία τους ή η συμβατότητά τους. Η *ασυμβατότητα* των ομόλογων δεσμών εκφράζεται με δύο παραλλάξεις :

- Ρx, που συνδέεται απλώς με τα υψόμετρα (βάθος)
- Ρy, που συνδέεται με την αλληλοτομία των ομόλογων ακτίνων

Εικόνα 4. Αλληλοτομία ομόλογων ακτίνων (Γεωργόπουλος, χχ).

Το επόμενο στάδιο, που αφορά την αποκατάσταση της κλίμακας του τρισδιάστατου μοντέλου καθώς και τον προσδιορισμό της θέσης του, ονομάζεται απόλυτος προσανατολισμός. Για τον υπολογισμό του χρειάζεται ο προσδιορισμός επτά παραμέτρων (κλίμακα, μεταθέσεις ΔΧ, ΔΥ, ΔΖ και στροφές Ω, Φ, Κ του μοντέλου). Ο απόλυτος προσανατολισμός είναι η διαδικασία που αποκαθιστά την αυθαίρετη σχέση του στερεοζεύγους που έχει προκύψει από τον σχετικό προσανατολισμό με το επίγειο σύστημα αναφοράς. Ο εξωτερικός προσανατολισμός μιας εικόνας είναι συνήθως άγνωστος και υπολογίζεται με τη χρήση φωτοσταθερών. Η σχέση που χρησιμοποιείται για την επίλυση του απόλυτου προσανατολισμού ενός στερεομοντέλου (7 παράμετροι) είναι ο μετασχηματισμός ομοιότητας στον χώρο, ενώ ο εξωτερικός προσανατολισμός μιας εικόνας (εύρεση των έξι αγνώστων X_0 , Y_0 , Z_0 , ω, φ, κ) μπορεί να προσδιοριστεί και απευθείας με την συνθήκη συγγραμμικότητας (Μωυσιάδης, 2015, Πατιάς, 1991).

1.7. Φωτοσταθερά σημεία

Τα φωτοσταθερά σημεία (Ground Control Points ή GCP) αποτελούν χαρακτηριστικά σημεία επί του εδάφους ή επί κατασκευών, των οποίων είναι γνωστές (μετρημένες) οι συντεταγμένες τους (X, Y, Z) στο χώρο σε ένα δεδομένο σύστημα συντεταγμένων. Τα φωτοσταθερά σημεία μπορεί να είναι φυσικά σημεία του εδάφους ή τεχνητά σημεία (στόχοι, σήμανση με χρώμα, ακμές κατασκευών), τα οποία θα πρέπει να είναι ευδιάκριτα και κατάλληλα κατανεμημένα.

1.8. Αεροτριγωνισμός

Αεροτριγωνισμός (και γενικότερα φωτοτριγωνισμός) ήταν αρχικά η διαδικασία πύκνωσης του οριζοντιογραφικού και υψομετρικού δικτύου ελέγχου, κατά την οποία οι μετρήσεις σε επικαλυπτόμενες φωτογραφίες συσχετίζονται σε ενιαία λύση στο χώρο με τη βοήθεια των προοπτικών ιδιοτήτων των εικόνων (ISPRS, 1998). Σήμερα με τον όρο Αεροτριγωνισμός εννοούμε τον υπολογισμό του εξωτερικού προσανατολισμού, ή και εσωτερικού προσανατολισμού, ενός συνόλου επικαλυπτόμενων εικόνων.

Μέσω του Αεροτριγωνισμού προσδιορίζονται οι εξωτερικοί προσανατολισμοί των εικόνων καθώς επίσης και οι τρισδιάστατες συντεταγμένες (X, Y, Z) των μετρημένων σημείων σύνδεσης στο προκαθορισμένο γεωδαιτικό σύστημα αναφοράς. Η επίλυση του αεροτριγωνισμού σε συγκεκριμένο σύστημα αναφοράς προϋποθέτει προφανώς τη γνώση ορισμένων σημείων με γνωστές γεωδαιτικές συντεταγμένες (φωτοσταθερά σημεία).

Οι βασικές μεθοδολογίες επίλυσης του αεροτριγωνισμού διακρίνονται ιστορικά ως εξής:

- Μέθοδος διαδοχικών προσανατολισμών
- Μέθοδος ανεξάρτητων μοντέλων
- Μέθοδος συνόρθωσης δέσμης.

Στη μέθοδο της συνόρθωσης δέσμης παρατηρούμενες ποσότητες είναι οι συντεταγμένες εικόνας των σημείων. Η μέθοδος αυτή αποτελεί τη σύγχρονη μέθοδο επίλυσης του αεροτριγωνισμού, έχοντας ως πλεονέκτημά της τον μικρό αριθμό διαδικασιών/εργασιών, και κατ' επέκταση τον περιορισμό των πιθανών σφαλμάτων και τη μεγιστοποίηση των επιτυγχανόμενων ακριβειών, με εφαρμογή κατάλληλων μαθηματικών μοντέλων συνόρθωσης. Η εξίσωση παρατήρησης είναι η συνθήκη συγγραμμικότητας. Οι άγνωστες παράμετροι, όπως προαναφέρθηκε, είναι οι συντεταγμένες (X, Y, Z) των σημείων σύνδεσης και, κυρίως, τα στοιχεία του εξωτερικού προσανατολισμού των εικόνων (X_o, Y_o, Z_o, ω, φ, κ) που συμμετέχουν στην επίλυση και απαρτίζουν το block του αεροτριγωνισμού.

Κατά την κλασική επίλυση του αεροτριγωνισμού, εξισώσεις παρατήρησης είναι μόνο οι φωτογραμμετρικές παρατηρήσεις. Για παράδειγμα, στη συνόρθωση αεροτριγωνισμού με την μέθοδο της δέσμης οι παρατηρούμενες ποσότητες είναι οι εικονοσυντεταγμένες και η εξίσωση παρατήρησης είναι η συνθήκη συγγραμμικότητας. Αυτό σημαίνει ότι, μετρώντας τις εικονοσυντεταγμένες των σημείων σύνδεσης και των γνωστών σημείων (φωτοσταθερών) σε όλες τις εικόνες του block όπου αυτά εμφανίζονται, προσδιορίζει κανείς τις συντεταγμένες χώρου (X, Y, Z) των άγνωστων μετρημένων σημείων και τις παραμέτρους του εξωτερικού προσανατολισμού των εικόνων (συντεταγμένες των σημείων λήψης και στροφές).

1.8.1. Συνδυασμένη επίλυση αεροτριγωνισμού

Τα τελευταία χρόνια, η χρήση δέκτη GPS(RTK) σε UAV, σε συνδυασμό με μετρήσεις από επίγειο δέκτη GPS με καταγραφή στατικών μετρήσεων (PPK), καθώς και η χρήση αδρανειακών συστημάτων (Inertial Navigation System, INS) σε UAV δίνουν τη δυνατότητα του άμεσου προσδιορισμού των γραμμικών στοιχείων του εξωτερικού προσανατολισμού όλων των εικόνων του block (συνδυασμένη επίλυση τριγωνισμού). Με αυτή την μέθοδο, οι μετρήσεις χρησιμοποιούνται για την πλοήγηση του UAV σε προκαθορισμένες θέσεις λήψης και ενεργοποίηση μηχανής, ενώ επίσης τα σημεία λήψης των εικόνων χρησιμοποιούνται κατά την επίλυση του αεροτριγωνισμού ως πρόσθετες εξισώσεις παρατήρησης (ως φωτοσταθερά σημεία) (Πέτσα, 2010).

1.8.2. Κύρια προβλήματα

<u>Διάνυσμα εκκεντρότητας (e)</u>

Το διάνυσμα εκκεντρότητας μεταξύ της κεραίας του GPS και του προβολικού κέντρου της μηχανής περιγράφει τη σχετική τρισδιάστατη μετάθεση μεταξύ των δύο αντίστοιχων συστημάτων αναφοράς. Οι μετρήσεις του δέκτη GPS που φέρει το UAV αναφέρονται στην κεραία του δέκτη που συνήθως βρίσκεται στο επάνω μέρος της ατράκτου. Αντίθετα, η κάμερα του UAV βρίσκεται συνήθως στο κάτω μέρος της ατράκτου. Το διάνυσμα μεταξύ των σημείων αυτών ονομάζεται διάνυσμα εκκεντρότητας (e).

Εικόνα 5. Εκκεντρότητα κάμερας - δέκτη GPS στο UAV (Γεωργόπουλος, χχ)

Χρονική διαφορά μέτρησης - λήψης

Το πρόβλημα αυτό δημιουργείται από την χρονική μη ταύτιση της στιγμής λήψης της εικόνας (χρονική στιγμή όπου το κλείστρο της μηχανής φτάνει στο μέγιστο άνοιγμα) με τη χρονική στιγμή λήψης της μέτρησης του GPS. Για τον προσδιορισμό των συντεταγμένων των σημείων λήψης εφαρμόζονται μέθοδοι παρεμβολής και λαμβάνονται υπόψη οι πλησιέστερες χρονικά μετρήσεις σε συνάρτηση με τη θέση λήψης.

Θέσεις μετρήσεων GPS

Θέσεις λήψης αεροφωτογραφιών

Εικόνα 6. Διαφορά στις θέσεις λήψης των μετρήσεων GPS/αεροφωτογραφιών (Γεωργόπουλος, χχ)

Άλλα προβλήματα

Επιπλέον των παραπάνω προβλημάτων, προστίθενται ακόμα οι ασάφειες φάσης σε περιπτώσεις δεκτών καταγραφής στατικών μετρήσεων (PPK), η διακοπή σήματος σε περιπτώσεις δεκτών καταγραφής μετρήσεων (RTK) και οι μετασχηματισμοί μεταξύ διαφορετικών συστημάτων αναφοράς (Πέτσα, 2010).

1.8.3. Πλεονεκτήματα – μειονεκτήματα μεθόδου

Με την μέθοδο την συνδυασμένης επίλυσης τριγωνισμού επιτυγχάνεται σημαντική οικονομία χρόνου/κόστους ως προς τις εργασίες πεδίου (μικρότερος αριθμός φωτοσταθερών). Το κύριο μειονέκτημα της μεθόδου αυτής είναι ότι, με την συμμετοχή των καταγεγραμμένων θέσεων λήψης κατά την επίλυση του τριγωνισμού, προστίθενται σφάλματα που έχουν να κάνουν με τις ακρίβειες ως προς τη θέση, την κλίμακα και τον προσανατολισμό. Συνεπώς η μέθοδος αυτή εξαρτάται άμεσα από την ακρίβεια μέτρησης της θέσης λήψης της αεροφωτογραφίας.

1.9. Συστήματα μη επανδρωμένων οχημάτων, μη επανδρωμένα εναέρια οχήματα και drones

Τα συστήματα μη επανδρωμένων οχημάτων (Unmanned Aircraft System, UAS) είναι γνωστά με διαφορετικά ονόματα και ακρωνύμια, όπως μη επανδρωμένα εναέρια οχήματα (Unmanned Aerial Vehicles, UAV) ή *drones*. Ο όρος UAS υιοθετήθηκε από το Υπουργείο Άμυνας των ΗΠΑ και από την Αρχή Πολιτικής Αεροπορίας του Ηνωμένου Βασιλείου. Ο Διεθνής Οργανισμός Πολιτικής Αεροπορίας εισήγαγε τον όρο τηλεπλοηγούμενο εναέριο σύστημα (Remotely-Piloted Aerial System, RPAS), ως μια συγκεκριμένη κατηγορία UAS (Colomina & Molina, 2014).

Πιο αναλυτικά, με τον όρο UAS χαρακτηρίζεται το ιπτάμενο όχημα που δεν φέρει πλήρωμα στην άτρακτό του και αποτελείται από ένα σύνολο συμπληρωματικών τεχνολογιών που συγκεντρώνονται για να εκπληρώσουν μια συγκεκριμένη εργασία. Με άλλα λόγια, το UAS θεωρείται ένα ολοκληρωμένο σύστημα στο οποίο, σε υψηλότερο τεχνολογικό επίπεδο, περιλαμβάνονται συνήθως το μη επανδρωμένο εναέριο όχημα (UAV), ο σταθμός ελέγχου εδάφους (ground control station) και η σύνδεση δεδομένων επικοινωνίας (communication data link) μεταξύ των αεροσκαφών και των συστημάτων εδάφους. Άλλα συστήματα του UAS που θεωρούνται εξίσου σημαντικά είναι οι αυτόματοι πιλότοι (auto-pilots), οι αισθητήρες πλοήγησης (navigation sensors), οι αισθητήρες απεικόνισης (imaging sensors), ο σερβομηχανισμός (mechanical servos) και τα ασύρματα συστήματα (wireless systems) (Colomina & Molina, 2014).

Ο όρος μη επανδρωμένα εναέρια οχήματα (Unmanned Aerial Vehicles, UAV ή Drones) συναντάται κυρίως στο πεδίο των υπολογιστών, της ρομποτικής και της τεχνητής νοημοσύνης, καθώς και στους τομείς της Φωτογραμμετρίας και της Τηλεπισκόπησης. Τα UAV, που με στρατιωτικούς όρους ονομάζονται drones, είναι εναέρια οχήματα πολλαπλών χρήσεων που δεν φέρουν πλήρωμα στην άτρακτό τους, ελέγχονται εξ αποστάσεως, μπορούν να ρυθμιστούν ώστε να είναι αυτόνομα είτε ημιαυτόνομα ή να εξαρτάται εξολοκλήρου ο χειρισμός τους από τον χειριστή (χειροκίνητη τηλεκατεύθυνση) και μπορούν να μεταφέρουν μια κάμερα ως φορτίο. Τα UAV επιτρέπουν την καταγραφή και παρακολούθηση της θέσης και του προσανατολισμού των αισθητήρων σε τοπικό ή παγκόσμιο σύστημα συντεταγμένων. Επίσης, μπορούν να χρησιμοποιηθούν σε μεγάλης και μικρής κλίμακας εφαρμογές (Anurogo et al., 2017). Τέλος, τα οφέλη της χρήσης τους στη Φωτογραμμετρία είναι σημαντικά, καθώς διακρίνονται για την ευελιξία τους στην απόκτηση δεδομένων, την ικανότητά τους να συλλέγουν δεδομένα σε απρόσιτα σημεία, αλλά και την ταχύτητά τους (Eisenbeiß, 2009).

Τα drones εμφανίστηκαν για πρώτη φορά στις αρχές του 20^{ου} αιώνα και χρησιμοποιήθηκαν ως στόχοι για εξάσκηση των στρατιωτικών δυνάμεων. Έπειτα, κατά τη διάρκεια του Β΄ Παγκόσμιου Πολέμου, θεωρήθηκε ότι μπορούν να μετασχηματιστούν σε μια ιπτάμενη βόμβα, η οποία θα ρίπτεται αιφνιδιαστικά στους αντιπάλους. Πρακτικά, όμως, τα drones χρησιμοποιήθηκαν για την εξ αποστάσεως παρακολούθηση των εχθρών, συλλέγοντας πληροφορίες για τις κινήσεις τους σε απρόσιτα σημεία. Στη συνέχεια, τα μη επανδρωμένα εναέρια οχήματα αποτέλεσαν σημαντικό εργαλείο κατά της τρομοκρατίας, όπου μετατράπηκαν σε συνδυαστικό όπλο, αφού μπορούσαν να παρακολουθούν αλλά και να βάλλουν προς τους αντιπάλους. Σε επόμενο στάδιο, τα UAV χρησιμοποιήθηκαν και από την αστυνομία, ενώ ήδη χρησιμοποιούνται για ειρηνικούς σκοπούς, όπως μεταφορά φαρμάκων, βιολογικών υλικών για ιατρικές εξετάσεις και τροφίμων από και προς δύσβατες περιοχές (Colomina & Molina, 2014). Τέλος, επιμέρους βασικοί τομείς χρήσης των UAV είναι η τοπογραφία, η πολεοδομία, η χωροταξία, η αρχαιολογία, η συγκοινωνιολογία, η δασοκομία, η γεωργία και για περιβαλλοντικές αποτυπώσεις (Remondino et al., 2011).

Στα UAV, αρχικά, ενσωματώθηκαν αισθητήρες πλοήγησης και χαρτογράφησης σε τηλεκατευθυνόμενες πλατφόρμες για την απόκτηση υψηλής ανάλυσης εικόνων από μικρό υψόμετρο. Η ανταπόκριση της ακαδημαϊκής κοινότητας ήταν μικρή, ωστόσο, διορατικές εταιρείες τεχνολογίας και υπηρεσιών που γνώριζαν καλά τις ανάγκες των χρηστών τους και οι αρχές της πολιτικής αεροπορίας, που πρόβλεψαν τα κοινωνικά και επιχειρηματικά οφέλη των μη επανδρωμένων εναέριων οχημάτων, άρχισαν σύντομα να αναπτύσσουν, να εφαρμόζουν και να ρυθμίζουν την τεχνολογία των UAV (Colomina & Molina, 2014). Σημαντικός αρωγός, φυσικά, της εξέλιξης των UAV ήταν η περαιτέρω ανάπτυξη της τεχνολογίας και, συγκεκριμένα, η τεχνολογική εξέλιξη σχετικά με τις μπαταρίες, τα συστήματα αυτόματου πιλότου και τις ψηφιακές φωτογραφικές μηχανές, παράγοντες που συνέβαλαν στη βελτίωση αυτών των οχημάτων και τελικά στη χρήση τους σε όλο και περισσότερους τομείς και εφαρμογές (Anurogo et al., 2017).

Αναφορικά με την κατηγοριοποίηση των UAV, γίνεται κατανοητό ότι αυτή αποτελεί ένα δύσκολο εγχείρημα, καθώς υπάρχει πληθώρα ταξινομήσεών τους σύμφωνα με διάφορα χαρακτηριστικά τους, όπως

- Μέγεθος
- Βάρος
- Αντοχή στα καιρικά φαινόμενα (άνεμος, βροχή)
- Αεροδυναμική
- Σύστημα λειτουργίας (εύρος αποστολής, υψόμετρο της πτήσης)
- Χρήση (επαγγελματική, ερασιτεχνική, αναψυχή, κ.λπ.)
- Κόστος
- Εμβέλεια (ασύρματη σύνδεση, τηλεμετρία)
- Χρόνος πτήσης
- Ωφέλιμο φορτίο
- Μηχανοκίνηση ή όχι

Σταθερά ή περιστρεφόμενα πτερύγια (VTOL) (Colomina & Molina, 2014).

Σύμφωνα με τους Remondino et al. (2011), τα UAV μπορούν να ταξινομηθούν σε τρεις μεγάλες κατηγορίες με βάση το μέγεθος, το βάρος και τις δυνατότητές τους ως προς τη διάρκεια της πτήσης. Ειδικότερα, είναι τα τακτικά UAV (tactical), τα οποία συνήθως είναι μικρού ή μεσαίου μεγέθους, το υψόμετρο πτήσης τους ανέρχεται στα 500 km, η διάρκεια πτήσης είναι από λίγα λεπτά μέχρι και δύο ημέρες, ενώ η μάζα του συστήματος φτάνει έως 100 kg. Επόμενη κατηγορία είναι τα στρατηγικά UAV (strategical). Στην κατηγορία αυτή εντάσσονται συστήματα που το υψόμετρό τους είναι άνω των 20 km και η διάρκεια πτήσης τους φτάνει ως τις τέσσερις μέρες. Τελευταία κατηγορία αποτελούν τα UAV ειδικών διεργασιών (special tasks), τα οποία αφορούν σε μη επανδρωμένα αυτόνομα μαχητικά αεροσκάφη.

1.10.Πεδίο Εφαρμογής UAV

Η συνεχόμενη εξέλιξη των UAV σε συνδυασμό με την Όραση Υπολογιστών (Computer Vision), καθώς και η συνεχώς αυξανόμενη ανάγκη για εφαρμογές χαμηλού κόστους, έχουν ως αποτέλεσμα τη συμμετοχή των UAV σε πολλούς τομείς, επιστημονικούς και μη (Colomina & Molina, 2014). Ο συνδυασμός αξιόπιστου αποτελέσματος - κόστους (μικρό κόστος εξοπλισμού σε σχέση με τα επανδρωμένα αεροσκάφη), αποτελούν πλέον ελκυστική λύση για την απόκτηση παρατηρήσεων, άντληση πληροφοριών και μελέτες φαινομένων.

Ο Ritzinger (όπως αναφέρεται στο Δουκαρή, 2015), πέραν των στρατιωτικών εφαρμογών, κατηγοριοποιεί τις εφαρμογές στους παρακάτω τομείς:

Η διαρκώς αυξανόμενη ανάγκη για χρήση των UAV σε αρκετούς τομείς τα καθιστά πλέον τα πιο ευέλικτα και οικονομικά μέσα, τα οποία προσαρμόζονται εύκολα στις ανάγκες και απαιτήσεις κάθε δραστηριότητας ή εφαρμογής. Ανάλογα με τη χρήση, τα UAV φέρουν προσαρμοσμένο εξοπλισμό για την υλοποίηση της κάθε εργασίας, όπως για παράδειγμα θερμικές κάμερες, τηλεμετρία, ραντάρ, αισθητήρες απόστασης, συστήματα GPS, κ.λπ. Με την εξέλιξη της τεχνολογίας καθώς και την ανάγκη για οικονομικότερες και πιο ευέλικτες λύσεις, η χρήση των UAV ολοένα και αυξάνεται χωρίς όμως απαραίτητα να αντικαθιστά άλλες μεθόδους, αλλά σε πολλές περιπτώσεις λειτουργεί ως συμπληρωματική μέθοδος, όπως π.χ. σε περιπτώσεις κινδύνου, αλλά και όταν απαιτείται εξοικονόμηση χρόνου, γρήγορες ενέργειες και ποιοτικά αποτελέσματα (Anurogo et al., 2017).

1.11. Πλεονεκτήματα - Μειονεκτήματα χρήσης UAV

Με την αλματώδη και διαρκή τεχνολογική εξέλιξη, οι εφαρμογές των UAV κερδίζουν συνεχώς έδαφος σε σχέση με τις παραδοσιακές φωτογραμμετρικές πλατφόρμες συλλογής. Καθώς σε πολλές περιπτώσεις η χρήση των UAV μπορεί να θεωρηθεί ότι μπορεί να λειτουργήσει συμπληρωματικά ή σε συνδυασμό με επίγειες μετρήσεις, υπάρχουν περιπτώσεις όπου μέσω της άμεσης γεωαναφοράς μπορεί να λειτουργήσει αυτόνομα ή και να αντικαταστήσει πλήρως τις παραδοσιακές μεθόδους αποτύπωσης (Anurogo et al., 2017).

<u>Πλεονεκτήματα</u>

- Μικρό κόστος εξοπλισμού
- Μικρό κόστος συντήρησης
- Ταχύτητα λήψης δεδομένων
- Εφαρμογή σε δυσπρόσιτες απρόσιτες περιοχές
- Δυνατότητα πτήσεων σε αρκετά μικρό ύψος
- Ακριβείς πτήσεις (GPS/INSS)
- Εφαρμογή σε καταστάσεις υψηλού κινδύνου (Anurogo et al., 2017, Eisenbeiß, 2009).

<u>Μειονεκτήματα</u>

- Καιρικά φαινόμενα (βροχή, άνεμος)
- Μικρή εμβέλεια σε σχέση με τα επανδρωμένα αεροσκάφη

- Χρήση μικρού-μεσαίου μεγέθους αισθητήρων
- Παρεμβολές στο σύστημα τηλεμετρίας
- Απομακρυσμένος τηλεχειρισμός
- Παρεμπόδιση από σμήνη πτηνών (Anurogo et al., 2017, Eisenbeiß, 2009).

1.12. Διαδικασία Φωτογραμμετρίας SfM και Άμεση Γεωαναφορά σε εικόνες από UAV

Μολονότι έχει σημειωθεί πρόοδος στη μείωση του κόστους της επίγειας χαρτογράφησης μέσω της ψηφιακής Φωτογραμμετρίας, η χρήση των UAV είχε, σε κάποιο βαθμό, παραμείνει αρχικά εντός του ακαδημαϊκού χώρου, με τον εμπορικό τοπογραφικό τομέα να κυριαρχείται από την τεχνολογία λέιζερ (laser scanner). Ωστόσο, με τα χαμηλού κόστους μη επανδρωμένα αεροσκάφη και τα αυτοματοποιημένα φωτογραμμετρικά λογισμικά, η Φωτογραμμετρία SfM/UAV κέρδισε έδαφος και αναδεικνύεται σε κυρίαρχη μέθοδο 3D ανακατασκευής, αλλά και γενικότερα σε ένα κοινό εργαλείο στην Φωτογραμμετρία όσο και την Τηλεπισκόπηση (Carbonneau & Dietrich, 2016).

Η Φωτογραμμετρία μέσω της μεθόδου SfM (Structure from Motion) που χρησιμοποιείται σε λήψεις από πλατφόρμες UAV έχει αποκτήσει ένα ευρύ φάσμα εφαρμογών. Η μέθοδος SfM, η οποία εξελίσσεται τα τελευταία 20 χρόνια, αποτελεί πλέον μια πλήρως αυτοματοποιημένη διαδικασία για την εξαγωγή της τρισδιάστατης δομής μιας σκηνής από πολλαπλές αλληλεπικαλυπτόμενες εικόνες (Mlambo, Woodhouse, Gerard & Anderson, 2017).

Ο στόχος της μεθόδου SfM είναι, μέσω της κίνησης της κάμερας που προσφέρει ένα σύνολο εικόνων μιας στατικής σκηνής και με συνδυασμό κοινών χαρακτηριστικών μεταξύ των εικόνων, να αναδημιουργήσει τρισδιάστατες σκηνές (Mancini et al., 2013).

Ομοίως με την κλασική Φωτογραμμετρία, η SfM χρησιμοποιεί εικόνες που λαμβάνονται από πολλαπλές οπτικές γωνίες προκειμένου να αποδώσει την τρισδιάστατη γεωμετρία ενός αντικειμένου ή μιας επιφάνειας. Ωστόσο, η μέθοδος SfM διαφοροποιείται ως προς την παραδοσιακή φωτογραμμετρική πρακτική κυρίως ως προς την νέα γενιά αλγορίθμων που επιτρέπουν τον αυτόματο προσανατολισμό τυχαίων εικόνων (εικόνες χωρίς δεδομένη σειρά λήψης). Ενώ οι κλασικές φωτογραμμετρικές μέθοδοι συνήθως βασίζονταν στις λωρίδες των επικαλυπτόμενων εικόνων που αποκτώνται σε παράλληλες γραμμές πτήσης, η μέθοδος SfM σχεδιάστηκε για να αποδώσει την τρισδιάστατη γεωμετρία σκηνών από τυχαία λαμβανόμενες εικόνες. Και εδώ, βέβαια, ο μόνος περιορισμός είναι ότι κάθε φυσικό σημείο χρειάζεται να εμφανίζεται σε

τουλάχιστον δύο εικόνες. Η χρηστικότητα των τυχαία τοποθετημένων εικόνων βασίζεται στην πρόοδο της αυτοματοποιημένης αντιστοίχισης σημείων μεταξύ των εικόνων, δηλαδή τον αυτόματο προσδιορισμό αντιστοιχιών pixel μεταξύ των εικόνων (Stentoumis et al., 2015). Μια κρίσιμη ιδιότητα αυτών των νέων προσεγγίσεων είναι η ικανότητά τους να αναγνωρίζουν και να συνταυτίζουν χαρακτηριστικά σε πολλές εικόνες, παρά την ενδεχόμενη αλλαγή στην κλίμακα της εικόνας καθώς και τις διαφορές στην οπτική γωνία της κάθε εικόνας. Επιπλέον, η χρήση π.χ. των κλίσεων αντί των απόλυτων τιμών της έντασης των pixel βοηθά ακόμα περισσότερο ώστε αντικείμενα ορατά από πολλαπλές οπτικές γωνίες να μπορούν να συσχετιστούν από τις διαφοροποιήσεις έντασης μεταξύ του αντικειμένου και του φόντου της εικόνας (Fonstad et al., 2013). Επίσης οι εξισώσεις που χρησιμοποιούνται στον αλγόριθμο μπορούν να επιλυθούν χωρίς να απαιτείται η a-priori γνώση των συντεταγμένων των θέσεων λήψης ή των φωτοσταθερών σημείων, αν και μπορούν να προστεθούν και να χρησιμοποιηθούν και τα δύο. Τέλος, η βαθμονόμηση της κάμερας (εύρεση παραμέτρων εσωτερικού προσανατολισμού) μπορεί να γίνει κατά τη διάρκεια της διαδικασίας (αυτοβαθμονόμηση). Έτσι, η μέθοδος μπορεί αυτόματα να εξάγει 3D φωτογραμμετρικά μοντέλα χωρίς να απαιτείται αυστηρή ομοιογένεια στις επικαλυπτόμενες εικόνες, τη θέση και τη βαθμονόμηση της κάμερας (Iglhaut et al., 2019).

Κατά κύριο λόγο, η διαδικασία Φωτογραμμετρίας SfM αναφέρεται στο στάδιο της βαθμονόμησης της κάμερας και στην κατασκευή του αραιού νέφους σημείων από τις παρατηρήσεις των ομόλογων σημείων μεταξύ των εικόνων. Στην SfM, και μέσω της συνόρθωσης με τη μέθοδο της δέσμης (Bundle Adjustment), υπολογίζονται ταυτόχρονα οι θέσεις της κάμερας, οι παράμετροι του εσωτερικού προσανατολισμού καθώς και το αραιό νέφος σημείων από τα σημεία σύνδεσης. Έπειτα, με τη χρήση των φωτοσταθερών σημείων ή/και τη γνώση των θέσεων λήψης των εικόνων (π.χ. από GPS), το 3D νέφος σημείων γεωαναφέρεται και αποκαθίσταται η κλίμακα του.

Συμπληρωματικά, θα πρέπει να σημειωθεί η επίπτωση των διαφορετικών προσεγγίσεων που χρησιμοποιούνται από την SfM και την παραδοσιακή Φωτογραμμετρία. Στην παραδοσιακή Φωτογραμμετρία η τελική ποιότητα του παραγόμενου προϊόντος βασίζεται σε έναν σχετικά μικρό αριθμό (<100) υψηλής ακρίβειας επίγειων σημείων ελέγχου (GCP) ή/και στις θέσεις της φωτογραφικής μηχανής. Αυτά τα σημεία επιτρέπουν τη βαθμονόμηση της κάμερας και την υψηλής ποιότητας αποτύπωση στην 3D γεωμετρία. Δεδομένου ότι τα επίγεια σημεία ελέγχου χρησιμοποιούνται για την επίλυση της συγγραμμικότητας στο χώρο του αντικειμένου (δηλαδή στον πραγματικό χώρο), σφάλματα στη μέτρηση των GCP μεταδίδονται σε αυτή την επίλυση, ενώ αυτό το αποτέλεσμα μπορεί να είναι μη γραμμικό εάν η κατανομή σφαλμάτων των GCP δεν είναι τυχαία. Στην SfM η τελική ποιότητα της βαθμονόμησης της κάμερας και του νέφους σημείων βασίζεται σε έναν πολύ μεγάλο αριθμό (>1000) ομόλογων σημείων που μετρούνται αυτόματα στις εικόνες και έχουν διαφορετικό βαθμό σφάλματος (άγνωστο στον χρήστη) που είναι συνάρτηση των ιδιοτήτων της εικόνας (Fonstad et al., 2013).

Ωστόσο, τα σφάλματα που εμφανίζονται στα δεδομένα κατά την ανακατασκευή μεταδίδονται μέσω του γεωμετρικού μοντέλου και οδηγούν σε σφάλματα στην κλίμακα, τις στροφές και τη μετάθεση. Εκτός από αυτά τα γραμμικά σφάλματα, λεπτομερείς έρευνες (Carbonneau & Dietrich, 2016, Fonstad et al., 2013, James & Robson, 2014) έχουν αποκαλύψει ότι οι συστηματικές "θολωτές" (doming) παραμορφώσεις μπορεί συχνά να εμφανίζονται στα τελικά αποτελέσματα τόσο για την κλασσική Φωτογραμμετρία όσο και για την Φωτογραμμετρία SfM. Αυτές οι παραμορφώσεις αποδίδονται στην διαστροφή του φακού.

Η διαστροφή του φακού αποτελεί ένα φαινόμενο που οφείλεται στον σχεδιασμό/κατασκευή του φακού και παραμορφώνει τις εικόνες. Υπό ιδανικές συνθήκες, ένας φακός θα παράγει μια εικόνα κανονικού ορθογωνικού πλέγματος όπου το μοτίβο θα διατηρεί ευθείες γραμμές και ορθές γωνίες. Στην πράξη, ο σχεδιασμός του φακού και τα σφάλματά του παραμορφώνουν την αυστηρά κεντρική προβολή της εικόνας και καταλήγουν σε μη ορθές γωνίες και καμπύλες γραμμές με πιθοειδείς (barrel) ή μηνοειδείς παραμορφώσεις (pincushion) (Carbonneau & Dietrich, 2016).

Εικόνα 8. Πιθοειδής και μηνοειδής ακτινική διαστροφή (Petsa & Grammatikopoulos, 2016).

Η υψηλής ποιότητας ανακατασκευή μέσω της Φωτογραμμετρίας SfM, ως εκ τούτου, απαιτεί τόσο την αποκατάσταση της κλίμακας, της θέσης και των στροφών του παραγόμενου 3D νέφους σημείων όσο και την ακριβή αποκατάσταση του εσωτερικού προσανατολισμού της μηχανής και του μοντέλου διαστροφής του φακού (μοντέλο Brown-Conrady). Η κυρίαρχη προσέγγιση είναι η απόκτηση δεδομένων ελέγχου επί του εδάφους (φωτοσταθερά - GCP) με επαγγελματικό εξοπλισμό (π.χ. RTK-GPS ή γεωδαιτικό σταθμό). Το λογισμικό Φωτογραμμετρίας (standard ή SfM) μπορεί στη συνέχεια να χρησιμοποιήσει τα δεδομένα ελέγχου επί του εδάφους (GCP) τόσο για τη γεωαναφορά όσο και για τη βαθμονόμηση της κάμερας (Carbonneau & Dietrich, 2016).

Εναλλακτικά, έχει προταθεί η λύση της Άμεσης Γεωαναφοράς (DG), σύμφωνα με την οποία η 3D ανακατασκευή στηρίζεται στην ακριβή γνώση της θέσης της κάμερας (X, Y, Z) και του προσανατολισμού της (γωνίες yaw, pitch, roll) κατά τη στιγμή κάθε λήψης μέσω συστήματος GPS/INS. Η μέθοδος αυτή λειτουργεί ως εναλλακτική λύση ή συμπληρωματικά στον αεροτριγωνισμό και εμφανίστηκε για πρώτη φορά στα μέσα της δεκαετίας του 1990 (Mian et al., 2015). Με τη λύση της Άμεσης Γεωαναφοράς δίνεται η δυνατότητα του άμεσου προσδιορισμού των γραμμικών στοιχείων του εξωτερικού προσανατολισμού όλων των εικόνων του block, και τα σημεία λήψης των εικόνων καθώς και οι στροφές χρησιμοποιούνται κατά την επίλυση του αεροτριγωνισμού ως πρόσθετες εξισώσεις παρατήρησης. Θεωρητικά η μέθοδος αυτή (με γνωστές τις παραμέτρους του εξωτερικού προσανατολισμού από GPS/IMU) δεν απαιτεί την ύπαρξη φωτοσταθερών σημείων και μπορεί κατ' αρχήν να αντικαταστήσει τον αεροτριγωνισμό (Rizaldy & Firdaus, 2012).

Το προφανές κύριο πλεονέκτημα της Άμεσης Γεωαναφοράς είναι ότι δεν χρειάζεται η πρόσβαση στο έδαφος για τοπογραφική εργασία, γεγονός που διευκολύνει την υψηλής ποιότητας τοπογραφική παρακολούθηση σε επικίνδυνες ή δυσπρόσιτες περιοχές. Επίσης, με την Άμεση Γεωαναφορά δεν απαιτείται πλέον επαγγελματικός εξοπλισμός (υψηλό κόστος) καθώς και επιπρόσθετος χρόνος για την ίδρυση και την μέτρηση φωτοσταθερών σε ολόκληρη την περιοχή ενδιαφέροντος.

Εικόνα 9. Αεροτριγωνισμός vs Άμεση Γεωαναφορά (Mian et. al., 2015).

ΚΕΦΑΛΑΙΟ 2

2.1. Περιοχή μελέτης

Η περιοχή μελέτης βρίσκεται στη θέση «Σεβαστοχώρι» εκτός οικισμού της Τοπικής Κοινότητας Κούμων του Δήμου Ρεθύμνου (Περιφερειακή Ενότητα Ρεθύμνου). Το ανάγλυφο της περιοχής μελέτης είναι ομαλό και κυμαίνεται υψομετρικά μεταξύ 470 και 487 m. Η έκταση έχει εμβαδόν 13.500 m². Εντός αυτής δεν υφίστανται δέντρα. Η συγκεκριμένη περιοχή επιλέχθηκε με βάση τα εξής κριτήρια:

- Έχει ομαλό επικλινές ανάγλυφο χωρίς τοπικές εξάρσεις
- Δεν υφίστανται φυσικά ή τεχνητά εμπόδια εντός της περιοχής (δέντρα, κατασκευές)
- Αποτελεί περιφραγμένη έκταση, μη επισκέψιμη από ανθρώπους αιγοπρόβατα, οπότε και εξασφαλίστηκε η διατήρηση και η ασφάλεια των ιδρυθέντων φωτοσταθερών σημείων.
- Ανήκει σε ένα ευρύτερο γεωγραφικό ανάγλυφο που είναι προστατευμένο από δυνατούς ανέμους.

Εικόνα 10. Απόσπασμα Google Earth περιοχής μελέτης.

2.2 Εξοπλισμός

Για τις ανάγκες της εργασίας χρησιμοποιήθηκε ο ακόλουθος εξοπλισμός: **Α.** Γεωδαιτικός δέκτης GPS GNSS GS07 της εταιρείας Leica, που χρησιμοποιήθηκε για την ένταξη των στάσεων στο Ελληνικό Γεωδαιτικό Σύστημα Αναφοράς (ΕΓΣΑ '87). Επίσης, χρησιμοποιήθηκε και ως σταθμός βάσης για τις μετρήσεις (PPK & RTK) κατά την πτήση του UAV Air Surveyor 4.

Εικόνα 11. GPS GNSS GS07 της εταιρείας Leica

B. Γεωδαιτικός σταθμός TS10 3" R500 της εταιρείας Leica με χρήση δύο στάσεων, εκ των οποίων μόνο η μία χρησιμοποιήθηκε ως στάση μέτρησης των φωτοσταθερών σημείων, με τη χρήση μίνι πρίσματος (STCPH1L, 64mm diameter) τοποθετημένου απευθείας στον σιδηροπάσσαλο σήμανσης των φωτοσταθερών σημείων χωρίς τη χρήση κονταριού αλλά με χρήση μίνι τριπόδου για την κατακορύφωση του πρίσματος.

Εικόνα 12. Γεωδαιτικός σταθμός TS10 3" R500 της εταιρείας Leica

Γ. UAV Air Surveyor 4 της εταιρείας Drone Services με έδρα το Ρέθυμνο Κρήτης, ιδιοκτησίας Καλατζή Στυλιανού. Το UAV Air Surveyor 4 είναι εξοπλισμένο με διπλόσυχνο δέκτη GPS (Tersysbx316r). Επίσης, φέρει κάμερα Sony A6000 με gimbal τριών αξόνων καθώς και το Ardu Copter base auto pilot Cube 2.1.

Εικόνα 13. UAV Air Surveyor 4 της εταιρείας Drone Services.

Δ. UAV DJI Phantom 4 pro V2 της εταιρείας DJI

Εικόνα 14. UAV DJI Phantom 4 pro V2 της εταιρείας DJI.

E. UAV Anafi της εταιρείας Parrot

Εικόνα 15. UAV Anafi της εταιρείας Parrot.

2.3. Ιδρυση φωτοσταθερών

Συνολικά ιδρύθηκαν 67 φωτοσταθερά σημεία σε ορθογωνικό κάνναβο (12 m x 13 m περίπου) επί της περιοχής αποτύπωσης. Για τη σήμανση των φωτοσταθερών σημείων χρησιμοποιήθηκε σιδηροπάσσαλος Φ10. Ο σιδηροπάσσαλος πακτώθηκε στο έδαφος μέχρι που εξείχε από αυτό 3-5 cm. Επίσης, τα φωτοσταθερά σημεία σημάνθηκαν και με τους αυτόματους στόχους του λογισμικού Metashape για ευκολότερο εντοπισμό στις εικόνες.

Εικόνα 16. Σήμανση φωτοσταθερών σημείων.

2.4. Αποτύπωση φωτοσταθερών

Τα φωτοσταθερά σημεία αποτυπώθηκαν με τον γεωδαιτικό σταθμό TS10 3" R500 της εταιρείας Leica με χρήση μίας και μόνο στάσης με τη χρήση μίνι πρίσματος (STCPH1L, 64mm diameter) τοποθετημένου απευθείας στον σιδηροπάσσαλο χωρίς τη χρήση κονταριού.

Η ένταξη της στάσης (ΕΓΣΑ '87) που χρησιμοποιήθηκε για την μέτρηση των φωτοσταθερών έγινε με τη χρήση του δέκτη GPS διπλής συχνότητας GS07 της εταιρείας Leica με τη μέθοδο PPK, με χρήση του δικτύου της Metricanet παίρνοντας λύση από τον σταθμό RETH – 0090.
2.5. Σχεδιασμός - Υλοποίηση Πτήσεων

Ο σχεδιασμός των πτήσεων υλοποιήθηκε με το λογισμικό Mission Planner (έκδοση 1.3.70). Αρχικά σχεδιάστηκε ένα πολύγωνο εμβαδού 13.5 στρεμμάτων το οποίο απείχε περίπου 10 m από κάθε ακραίο φωτοσταθερό σημείο. Εντός του πολυγώνου αυτού σχεδιάστηκαν συνολικά 10 πτήσεις με κατακόρυφη θέση κάμερας και επικάλυψη 80% κατά μήκος και κατά πλάτος. Επιπλέον, επιλέχθηκε ένα δεύτερο πολύγωνο αρκετά διευρυμένο και προς τις 4 διευθύνσεις, όπου εντός αυτού σχεδιάστηκαν 5 πτήσεις με κεκλιμένη κάμερα (κλίση ~30°) και επικάλυψη 60% / 40%. Ακόμη, τα ύψη των πτήσεων επιλέχθηκαν να είναι 40, 50 και 60 m. Στον Πίνακα 1 αναγράφονται τα στοιχεία κάθε επιμέρους πτήσης.

			ΠΡΟΣΑΝΑ-			ЕПІКА	АЛҮѰН	TAXY-		ΦΩΤΟ-
A/A	DRONE	ΥΨΟΣ	τολισμοσ	ΓΩΝΙΑ	КАМЕРА	ΜΗΚΟΣ	ΠΛΑΤΟΣ	THTA	ΦΑΚΟΣ	ΓΡΑΦΙΕΣ
1	Air Surveyor 4	40	N-S	123	Κατακόρυφη	80	80			159
2	Air Surveyor 4	40	E-W	214	Κατακόρυφη	80	80			148
3	Air Surveyor 4	40	N-S	123	Κεκλιμένη 30° Ν	60	40			79
4	Air Surveyor 4	40	N-S	123	Κεκλιμένη 30° S	60	40			59
5	Air Surveyor 4	40	E-W	214	Κεκλιμένη 30° Ε	60	40	5m/s	24.3-megapixel APS-C CMOS sensor, 16mm	61
6	Air Surveyor 4	40	E-W	214	Κεκλιμένη 30° W	60	40	511/8	ΣταθερόςΦακός Mirror- less	60
7	Air Surveyor 4	50	N-S	123	Κατακόρυφη	80	80			93
8	Air Surveyor 4	50	E-W	216	Κατακόρυφη	80	80			94
9	Air Surveyor 4	60	N-S	123	Κατακόρυφη	80	80			64
10	Air Surveyor 4	60	E-W	216	Κατακόρυφη	80	80			61
11	ParrotAnafi	40	N-S	123	Κατακόρυφη	80	80	-	Sony 1/2.4" CMOS 21MP, 23mm at F/2.4,	131
12	ParrotAnafi	40	E-W	214	Κατακόρυφη	80	80	-	Electronic shutter 1 to 1/10000s	159
13	Phantom 4 pro V2	40	N-S	123	Κατακόρυφη	80	80	-	1" CMOS Effective pix- els: 20M, 8.8 mm/24	162
14	Phantom 4 pro V2	40	E-W	214	Κατακόρυφη	80	80	-	mm, f/2.8 - f/11, Me- chanical Shutter 8 -	164
15	Phantom 4 pro V2	40	N-S-E-W	-	Κεκλιμένη	80	80	-	2000s, Electronic shutter 8 -1/8000s	72

Πίνακας 1 Στοιχεία πτήσεων UAV

Η κάθε πτήση σχεδιάστηκε αρχικά στο γραφείο και ελέγχθηκε/διορθώθηκε στο πεδίο κατά την υλοποίησή της. Για τις 10 πτήσεις που υλοποιήθηκαν με κατακόρυφη κάμερα, χρησιμοποιήθηκε το ίδιο πολύγωνο πτήσης, ενώ στις 5 υπόλοιπες πτήσεις με κεκλιμένη κάμερα χρησιμοποιήθηκε επίσης σε όλες το διευρυμένο πολύγωνο πτήσης.

Όλες οι πτήσεις έλαβαν χώρα την 20-05-2020, με ώρα έναρξης πτήσεων 9:00 π.μ. και ώρα λήξης περίπου 01:30 μ.μ. Οι καιρικές συνθήκες που επικρατούσαν ήταν καλές, χωρίς άνεμο, και υπήρχε αραιή συννεφιά καθ' όλη τη διάρκεια των πτήσεων. Στη συνέχεια φαίνονται ενδεικτικές εικόνες από τις λήψεις.

Την ίδια μέρα, νωρίτερα, μετρήθηκαν τα φωτοσταθερά σημεία. Κατά την υλοποίηση των πτήσεων, ο γεωδαιτικός δέκτης GPS GNSS Leica GS07 στηνόταν σε προσωρινή στάση και άρχιζε η καταγραφή μετρήσεων (PPK & RTK) τουλάχιστον 5 λεπτά νωρίτερα από την έναρξη πτήσης. Κατά την πτήση, το GPS του UAV κατέγραφε ανά χρονικό διάστημα 1 sec τη θέση του με την μέθοδο RTK, κάνοντας χρήση του δικτύου της Metricanet και παίρνοντας λύση από τον σταθμό RETH – 0090, και έτσι καταγράφηκε η πλήρης πορεία του κατά το σύνολο της πτήσης. Μετά το πέρας της πτήσης, ο γεωδαιτικός δέκτης GPS συνέχιζε να καταγράφει επιπλέον για 3-5 λεπτά.

2.6. Επεξεργασία πρωτογενών δεδομένων

Μετά την ολοκλήρωση των πτήσεων, συλλέχθηκαν τα δεδομένα των μετρήσεων (αρχεία μετρήσεων μέτρησης φωτοσταθερών σημείων, αρχεία καταγραφής GPS UAV, εικόνες από UAV), και επιλύθηκαν και κατηγοριοποιήθηκαν ανά πτήση και UAV. Η μετατροπή του datum από WGS84 στο EGS '87 έγινε με χρήση του λογισμικού Trasformation Tools του Hepos.

2.7. Επιλύσεις πτήσεων

Όλες οι επιλύσεις των πτήσεων έγιναν με τη χρήση του φωτογραμμετρικού λογισμικού Photoscan Metashape Version 1.6.0 build 9217 (64 bit). Κατά την εισαγωγή των εικόνων στο λογισμικό, ορίστηκαν οι εξής παράμετροι :

- Σύστημα αναφοράς: GGRS87 / Greek Grid (EPSG:2100) (ΕΓΣΑ '87)
- Key point limit 80.000
- Tie point limit 10.000
- Όλα τα "align" έγιναν στο επίπεδο "High"
- Σε όλες τις επιλύσεις οι παράμετροι βαθμονόμησης ήταν οι: F (σταθερά μηχανής), Cx και Cy (θέση πρωτεύοντος σημείου), K1, K2 καιK3 (συντελεστές ακτινικής διαστροφής), και P1 και P2 (συντελεστές έκκεντρης διαστροφής).
 Σε πρώτη φάση επιλύθηκαν όλες οι πτήσεις με κατακόρυφη κάμερα (πτήσεις 1,

2, 7, 8, 9, 10, 11, 12, 13, 14), που αποτελούν πτήσεις μονής κατεύθυνσης (N-S, E-W), αποκλειστικά και μόνο βάσει της θέσης λήψης των εικόνων όπως αυτή προέκυψε από τα GPS των UAV. Στη φάση αυτή, όλα τα μετρημένα φωτοσταθερά χρησιμοποιήθηκαν ως σημεία ελέγχου (check points).

Εικόνα 17. Σχέδιο πτήσης μονής κατεύθυνσης: διάταξη παράλληλων γραμμών (Δουκαρή, 2015).

Στο επόμενο στάδιο ακολούθησαν συνδυαστικές επιλύσεις των πτήσεων (διπλής κατεύθυνσης N-S-E-W), καθώς επίσης και επιλύσεις που συμπεριελάμβαναν πτήσεις με κατακόρυφη και κεκλιμένη θέση κάμερας.

Εικόνα 18. Σχέδιο πτήσης διπλής κατεύθυνσης, διάταξη επικαλυπτόμενων παράλληλων γραμμών (Δουκαρή, 2015).

Στις διαφορετικές επιλύσεις που πραγματοποιήθηκαν, υπήρξαν διαφορετικές προσεγγίσεις ως προς τα βάρη των GPS των UAV σε σχέση με τα GCP.

Τα 6 φωτοσταθερά σημεία 1-9-34-46-60-66 (Εικόνα 19) λειτούργησαν ως τα κύρια φωτοσταθερά που χρησιμοποιήθηκαν στο σύνολο των επιλύσεων ως GCP, με κύριο κριτήριο τη γεωγραφική κατανομή τους στο σύνολο της περιοχής αποτύπωσης.

Εικόνα 19. Κατανομή GCP στην περιοχή αποτύπωσης.

2.8. Σφάλμα εκκεντρότητας UAV Air Surveyor 4

Οσον αφορά το UAV Air Surveyor 4, θα πρέπει να αναφερθεί πως αποτελεί ιδιοκατασκευή. Το διάνυσμα εκκεντρότητας (e) μεταξύ του προβολικού κέντρου της μηχανής και της κεραίας του GPS, παρ' όλο που έχει υπολογιστεί με ακρίβεια (το πλαίσιο του αεροσκάφους τυπώθηκε εξολοκλήρου σε 3D εκτυπωτή οπότε το διάνυσμα υπολογίζεται με ακρίβεια 0.4 mm που αποτελεί και την ακρίβεια εκτύπωσης του εκτυπωτή), δεν συνυπολογίστηκε στις μετρήσεις GPS. Όλες οι μετρήσεις (συντεταγμένες θέσεων λήψης εικόνων από το GPS του UAV) συνορθώθηκαν μεταγενέστερα των πτήσεων. Σύμφωνα με τους Lo et al. (2015), το διάνυσμα εκκεντρότητας μεταβάλλεται κατά την πτήση, όμως στην προκειμένη περίπτωση θεωρήθηκε ως σταθερό μέγεθος λόγω της μικρής μεταβολής της τιμής του. Λόγω του μικρού μεγέθους του διανύσματος (X = Y = 0, Z=18.52 cm), η κλίση κατά τη διάρκεια των πτήσεων υπολογίστηκε ότι θα προσθέτει κατακόρυφο σφάλμα θέσης περίπου 1 cm. Το σφάλμα θέσης αυτό είναι μέσα στα όρια σφάλματος εντοπισμού GPS (2-3 cm).

2.9. Πίνακες στοιχείων πτήσεων, αποτελέσματα επιλύσεων

Τα σετ των επιλύσεων που υλοποιήθηκαν παρουσιάζονται στους επόμενους πίνακες, όπου σε κάθε σετ μονωμένων ή συνδυαστικών επιλύσεων από κάθε UAV διατηρήθηκαν σταθερά τα βάρη (GPS drone - GCP–Checkpoints).

Πίνακας 2
Στοιχεία πτήσης 1, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 1.00 m

	E-the	m No	1	VIII		ΡΟΣΑΝΑ-	FONIA	KANA		ΕΠΙΚΑ	лүψн	Fotos	
	Επιλυσ	η ΙΝΟ	1	ΥΨ		ΟΛΙΣΜΟΣ	ΙΩΝΙΑ	KAIVII	EPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 1				0	N-S	123	Κατακό	ρυφη	80	80	159	
D	rone GPS A	ccuracy	(1.00m)				Grou	nd Control po	ints - Check	points (0.0)50m)		
c	amera Loc	ation Er	ror (cm)		Gro	und Contro	ol Points	Error (cm)		Check Po	oints Error (:m)	
X error	error Yerror Zerror Total erro			ror	X error	Y error	Z error	Total error	X error	Y error	Z error	Tota	al error
8.21	8.21 5.35 1.25 9.8				-	-	-	-	21.97	19.66	5 10.0	4	31.15

Πίνακας 3 Στοιχεία πτήσης 2, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 1.00 m

	E-On-	n Na O		VIIIC	л ПР	ΟΣΑΝΑ-				ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	η 110 Ζ		ĭΨC	72 то	ΛΙΣΜΟΣ	ΙΩΝΙΑ	KAIVIEF	A	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 2)	E-W	214	Κατακόρ	υφη	80	80	148	
D	rone GPS A	ccuracy (1	.00m)				Grou	nd Control poin	ts - Check	points (0.0	50m)		
C	Camera Location Error (cm)					und Contr	ol Points	Error (cm)		Check Po	oints Error (cm)	
X error	Y error	Z error	Total er	ror	X error	Y error	Z error	Total error	X error	Y error	Z error	Tota	l error
6.11	9.12	1.16	11.04		-	-	-	-	9.12	1.16	10.98		11.04

Πίνακας 4 Στοιχεία πτήσεων 1-2, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 1.00 m

		n Na 2		VIIIOE	ПРС	ΟΣΑΝΑ-	FONIA	KABAE	DA	ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	η Νο σ		¥ΨΟΣ	то/	ΙΣΜΟΣ	ΙΩΝΙΑ	KAIVIE	PA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air Su	Air Surveyor 4 Πτήση 1-2				N-	S-E-W	-	Κατακόρ	ουφη	80	80	307	
D	rone GPS A	ccuracy (1	.00m)				Grour	nd Control poin	ts - Check	points (0.0	50m)		
C	amera Loca	ation Error	(cm)		Grou	nd Contr	ol Points I	Error (cm)		Check Po	ints Error (c	m)	
X error	Y error	Z error	Total erro	or er	X ror	Y error	Z error	Total error	X error	Y error	Z error	Total	error
8.63	6.78	1.04	11.02		-	-	-	-	2.09	6.30	19.08		20.20

Στοιχεία πτήσης 7, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 1.00 m

	E -{}	m No 4		VIIIOE	ПР	ΟΣΑΝΑ-		KANA		ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	5ղ 1\0 4		τΨΟΣ	TO	ΛΙΣΜΟΣ		KAIVII	EPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 7					N-S	123	Κατακό	ρυφη	80	80	93	
D	rone GPS A	Accuracy (L.00m)				Grou	nd Control poi	nts - Check	points (0.05	50m)		
C	Camera Loc	ation Erro	r (cm)		Grou	nd Contro	ol Points	Error (cm)		Check Poi	nts Error (c	m)	
X error	Y error	Z error	Total err	or er	X ror	Y error	Z error	Total error	X error	Y error	Z error	Total	error
9.06	6.11	1.50	11.03		-	-	-	-	34.96	22.98	8 8.51		42.70

Πίνακας 6

Στοιχεία πτήσης 8, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 1.00 m

	E-floo	m No 5		VIIIOS	ПР	ΟΣΑΝΑ-		KANA		ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	511 140 3		τΨΟΣ	то	ΛΙΣΜΟΣ		KAIV	IEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Air S	Air Surveyor 4 Πτήση 8					E-W	216	Κατακά	όρυφη	80	80	94	
D	rone GPS A	ccuracy (L.00m)				Grou	nd Control po	ints - Check	points (0.05	50m)		
C	Camera Location Error (cm)					nd Contro	ol Points	Error (cm)		Check Poi	nts Error (cr	n)	
X error	Y error	Z error	Total erro	or er	X ror	Y error	Z error	Total error	X error	Y error	Z error	Total	error
6.95	5.95 9.48 1.39 11.84				-	-	-	-	18.29	34.39	23.90		45.70

Πίνακας 7

Στοιχεία πτήσεων 7-8, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 1.00 m

	E-12	m Na (VIIIOT	ПР	ΟΣΑΝΑ-		KANAF	DA	ЕПІКА	лүψн	Fatas	
	Επιλυσ	η Νο ο		τΨΟΣ	то	ΛΙΣΜΟΣ	ΙΩΝΙΑ	KAIVIE	PA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air Su	Air Surveyor 4 Πτήση 7-8				N	-S-E-W	-	Κατακόρ	ουφη	80	80	187	
D	rone GPS A	ccuracy (1	.00m)				Grour	nd Control poin	its - Check	points (0.0	50m)		
C	Camera Loca	ation Error	(cm)		Grou	nd Contro	ol Points	Error (cm)		Check Po	ints Error (c	m)	
X error	Y error	Z error	Total erro	or er	X ror	Y error	Z error	Total error	X error	Y error	Z error	Total	error
9.72	9.72 9.45 3.57 14.02				-	-	-	-	1.82	2.98	14.18		14.61

Στοιχεία πτήσης 9, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 1.00 m

	E -{}	No 7		VIIIOE	ПР	ΟΣΑΝΑ-	FONUA	KAN		ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	5η No 7		ΫΨΟΣ	то	ΛΙΣΜΟΣ	ΙΩΝΙΑ	KAIV	IEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 9					N-S	123	Κατακ	όρυφη	80	80	64	
D	rone GPS A	ccuracy (1	.00m)				Grou	ind Control po	ints - Check	points (0.05	50m)		
C	Camera Loc	ation Erro	r (cm)		Grou	nd Contro	ol Points	Error (cm)		Check Poi	nts Error (cr	n)	
X error	Y error	Z error	Total err	or e	X ror	Y error	Z error	Total error	X error	Y error	Z error	Total	error
6.47	7.16	1.85	9.83		-	-	-	-	27.41	36.51	25.03		52.07

Πίνακας 9

Στοιχεία πτήσης 10, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 1.00 m

	Entime	m No 9		VIIIOS	ПР	ΟΣΑΝΑ-		KANA		ΕΠΙΚΑ	лүψн	Fotos	
	Επιλυο	51 110 8		τΨΟΣ	то/	ΛΙΣΜΟΣ	I <u>M</u> IA	KAIVI	EPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Air S	urveyor 4	iη 10	60		E-W	216	Κατακό	ρυφη	80	80	61		
D	Drone GPS Accuracy (1.00m)						Grou	nd Control poi	nts - Check	points (0.05	50m)		
C	Camera Location Error (cm)					nd Contro	ol Points	Error (cm)		Check Poi	ints Error (c	n)	
X error	Y error	Z error	Total erro	or er	K ror	Y error	Z error	Total error	X error	Y error	Z error	Total	error
7.25	7.25 4.66 1.51 8.75				-	-	-	-	9.18	24.54	13.25		29

Πίνακας 10

Στοιχεία πτήσεων 9-10, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 1.00 m

	E-floor	n Na O		VIIIOS	ΠΡΟΣΑΝΑ-		KANA		ΕΠΙΚΑ	лүψн	Fotos	
	Επιλυσ	II INO 9		tΨUZ	τολιέμος	IMA	KAIVII	EPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Air Sur	veyor 4	Πτήση 9	-10	60	N-S-E-W	-	Κατακό	ρυφη	80	80	125	
Dr	one GPS Ac	curacy (1.0	00m)			Grou	Ind Control poi	nts - Check p	oints (0.05	0m)		
Ca	amera Loca	tion Error ((cm)		Ground Cont	rol Points	Error (cm)		Check Poi	ints Error (cr	n)	
X error	Y error	Z error	Total erro	or eri	(Y ror error	Z error	Total error	X error	Y error	Z error	Total	error
10.50	8.47	5.44	14.55	-		-	-	1.94	3.37	60.95		61.07

Στοιχεία πτήσης 1, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 0.05 m

	E-12	- Na 10		VIIIOT	ПР	ΟΣΑΝΑ-	FONIA	KANA		ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	η Νο Ιυ		τΨΟΣ	то	ΛΙΣΜΟΣ	ΙΩΝΙΑ	KAIV	IEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Surveyor 4	Πτι	<u>່</u> ση 1	40		N-S	123	Κατακά	όρυφη	80	80	159	
D	orone GPS A	ccuracy (0	.05m)				Grou	ind Control po	ints - Check	points (0.0	50m)		
C	Camera Loc	ation Erroi	[.] (cm)		Grour	nd Contro	ol Points	Error (cm)		Check Poi	nts Error (c	n)	
X error	Y error	Z error	Total erro	or er	X ror	Y error	Z error	Total error	X error	Y error	Z error	Total	l error
7.48	4.69	1.21	8.91		-	-	-	-	22.02	20.36	17.38	34	.67

Πίνακας 12

Στοιχεία πτήσης 2, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 0.05 m

	E-12	- No 11		VIIIO	ПР	ΟΣΑΝΑ-		KANA		ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	n 11 o 11		YΨU2	то	ολισμος		KAIVII	EPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Surveyor 4	Πτ	<u>ή</u> ση 2	40		E-W	214	Κατακό	ρυφη	80	80	148	
D	rone GPS A	ccuracy (.05m)				Grou	nd Control poi	nts - Check	points (0.0	50m)		
C	amera Loc	ation Erro	r (cm)		Grou	and Contro	ol Points	Error (cm)		Check Po	ints Error (c	m)	
X error	Y error	Z error	Total err	or e	X rror	Y error	Z error	Total error	X error	Check Points Error (cm) Y error Z error Total e			
5.16	7.84	1.18	9.47		-	-	-	-	13.16	25.23	3 9.85		30.11

Πίνακας 13

Στοιχεία πτήσεων 1-2, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 0.05 m

	E-12	- No 10		VIIIOT	ПРО	ΟΣΑΝΑ-	FONIA	KABAF	DA	ЕПІКА	лүψн	Fatas		
	Επιλυσ	η NO 12		τΨΟΣ	то/	ΛΙΣΜΟΣ	ΙΩΝΙΑ	KAIVIE	PA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos		
Air Su	urveyor 4	Πτήσι	1-2 ן	40	N-	-S-E-W	-	Κατακόρ	ουφη	80	80	307		
D	rone GPS A	ccuracy (0	.05m)				Grour	nd Control poin	its - Check	points (0.0	ints (0.050m)			
C	Camera Loc	ation Error	(cm)		Grou	nd Contr	ol Points	Error (cm)		Check Po	ints Error (c	m)		
X error	Y error	Z error	Total erro	or en	K ror	Y error	Z error	Total error	X error	Y error	Z error	Total	error	
8.27	6.51	0.96	10.58		-	-	-	-	1.92	5.94	13.30		14.69	

Στοιχεία πτήσης 7, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 0.05 m

	E-íla-	n Na 12		VIIIOS	. ПР	ΟΣΑΝΑ-		KANA		ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	η NO 13		¥ΨΟΣ	то	ολιδωος	ΙΩΝΙΑ	KAIV	IEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 7			50		N-S	123	Κατακά	όρυφη	80	80	93	
D	Drone GPS Accuracy (0.05m)						Grou	ind Control po	ints - Check	points (0.05	50m)		
C	Camera Loc	ation Erro	r (cm)		Grou	nd Contro	ol Points	Error (cm)		Check Poi	nts Error (cr	n)	
X error	Y error	Z error	Total err	or e	X rror	Y error	Z error	Total error	X error	Y error	Z error	Tota	l error
7.61	5.01	1.25	9.19		-	-	-	-	32.84	24.02	11.00		42.15

Πίνακας 15

Στοιχεία πτήσης 8, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 0.05m

	E-flax	No 1/		VIIIC		ΡΟΣΑΝΑ-		KANA		ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυο	511 INO 14		YΨC		ονιέμος		KAIVII	-PA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air	Surveyor 4	Πτ	<u></u> ίση 8	50	0	E-W	216	Κατακό	ρυφη	80	80	94	
	Drone GPS	Accuracy (.05m)				Grou	nd Control poi	nts - Check	points (0.0	50m)		
	Camera Lo	cation Erro	r (cm)		Gro	und Contro	ol Points	Error (cm)		Check Po	ints Error (c	n)	
X error	Y error	Z error	Total erro	or	X error	Y error	Z error	Total error	X error	Y error	Z error	Total	error
5.80	7.79	1.40	9.82		-	-	-	-	19.20	34.47	7.40		40.15

Πίνακας 16

Στοιχεία πτήσεων 7-8, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 0.05 m

	E -12	• No 15		VIIIOT	ΠΡΟΣΑΝΑ-	FONIA	KADAE	DA	ΕΠΙΚΑ	лүψн	Fotos	
	Επιλυσ	η INO 15		ΫΨΟΣ	τολιέμος	ΙΩΝΙΑ	KAIVIE	PA	ΜΗΚΟΣ	ΠΛΑΤΟΣ		
Air Su	urveyor 4	Πτήση	7-8	50	N-S-E-W	-	Κατακόρ	ουφη	80	80	187	
D	rone GPS A	ccuracy (0.	05m)			Grou	nd Control poi	nts - Check	points (0.05	i0m)		
C	amera Loca	ation Error	(cm)		Ground Contr	ol Points	Error (cm)		Check Po	ints Error (cı	n)	
X error	Y error	Z error	Total erro	or err	(Y or error	Z error	Total error	X error	Y error	Z error	Total	error
8.97	6.71	1.25	11.27	-	· _	-	-	1.17	8.55	11.38		14.29

Στοιχεία πτήσης 9, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 0.05 m

	E-12		-	VIIIO	ПР	ΟΣΑΝΑ-		KADAFT		ΕΠΙΚΑ	лүψн	Fatas			
	Επιλυσ	η Νο Ι)	τΨΟΣ	то	ΛΙΣΜΟΣ	ΙΩΝΙΑ	KAIVIEF	A	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos			
Air S	Surveyor 4	П	ήση 9	60		N-S	123	Κατακόρ	υφη	80	80 64				
D	rone GPS A	ccuracy ().05m)				Grour	d Control point	ints - Check points (0.050m)						
C	Camera Loc	ation Erro	r (cm)		Grou	und Contr	ol Points	Error (cm)		Check Po	oints Error (. (cm)			
X error	Y error	Z error	Total err	or e	X rror	Y error	Z error	Total error	X error	Y error	Z error	Total	error		
2.74	2.41	1.95	4.14		-	-	-	-	0.34	0.33	1.07		1.17		

Πίνακας 18

Στοιχεία πτήσης 10, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 0.05 m

	E-12	- No. 17		VIIIOE	ΠΡΟΣΑΝΑ-	FONUA	KADA		ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	η Νο 17		YΨUΣ	τολιέμος	IMA	KAIVI	EPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 10			60	E-W	216	Κατακό	ρυφη	80	80	61	
D	Drone GPS Accuracy (0.05m)					Grou	nd Control poi	nts - Check	points (0.0	50m)		
C	Camera Loc	ation Error	(cm)		Ground Contr	ol Points	Error (cm)		Check Po	ints Error (c	m)	
X error	Y error	Z error	Total erro	or er	(Y or error	Z error	Total error	X error	Y error	Z error	Total	error
3.69	2.74	1.67	4.89			-	-	5.81	27.15	74.52		79.52

Πίνακας 19

Στοιχεία πτήσεων 9-10, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 0.05 m

	E-12	. N. 10		VIIIO	<u>,</u> п	ΡΟΣΑΝΑ-	FONI				ЕПІКА	Λ ΥΨΗ	Fatas
	Επιλυσ	1 NO 18		tΨU	2 то	ΟΛΙΣΜΟΣ		•	AIVIEPA		мнкоΣ	ΠΛΑΤΟ	Folos
Air Su	rveyor 4	Πτήση	9-10	60	٦	N-S-E-W	-	Κα	τακόρυφη		80	80	125
D	rone GPS A	ccuracy (0.	05m)				Grou	nd Control p	oints - Cheo	k point:	s (0.050r	n)	
C	amera Loca	ation Error	(cm)		Grour	nd Contro	ol Points	Error (cm)		Chec	k Points	Error (cm)	
X error	Y error	Z error	Total erro	or e	X error	Y error	Z error	Total error	X error	Y err	or Z	error	Total error
3.51	3.46	4.22	6.49		-	-	-	-	1.53	1.	66	70.41	70.41

Στοιχεία πτήσης 1, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 1.00 m

	E	N- 10		VIIIOS	ПРО	ΣΑΝΑ-	FONIA				ЕПІКА	лүψн	Fatas	1
	Επιλυση	NO 19		ΫΨΟΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	urveyor 4	Πτήσ	η 1	40	I	N-S	123		Κατακόρυφ	η	80	80	159	
Di	rone GPS Ac	curacy (1.0	0m)				Grour	nd C	ontrol points	Check p	oints (0.05	i0m)		
С	amera Locat	ion Error (cm)		Grou	und Cont	rol Points	Erre	or (cm)		Check I	oints Error	(cm)	
X error	Y error	Z error	Total error	X e	rror	Y error	Z erro	or	Total error	X erro	Y erro	r Z error	Tota	l error
20.57	17.55	9.00	28.50		4.16	4.68	3 2.6	58	6.82	4.2	6 3.4	6 3.4	5	6.52

Πίνακας 21

Στοιχεία πτήσης 2, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 1.00 m

		No. 20		VIIIOT	ΠΡΟΣ	ANA-					ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυση	NO 20		YΨUΣ	τολιχ	ΣΟΜΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	urveyor 4	Πτής	iη 2	40	E-'	W	214		Κατακόρυφ	η	80	80	148	
D	rone GPS Ac	curacy (1.0	Dm)				Groun	d Co	ontrol points -	Check p	oints (0.05	0m)		
C	amera Locat	ion Error (:m)		Grour	nd Conti	rol Points	Erro	or (cm)		Check F	oints Error (cm)	
X error	Y error	Z error	Total error	X e	rror	Y error	Z erro	or	Total error	X erro	Y erro	Z error	Total	l error
12.27	23.17	16.57	31.02		3.10	4.20	2.8	30	5.92	2.0	3 3.9	4 2.46		5.09

Πίνακας 22

Στοιχεία πτήσεων 1- 2, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 1.00 m

	E-the	n No 91		VIIIOS	ПРС)ΣANA-					ЕПІКА	лүψн	Fatas	
	Επιλυσ	n 110 21		τΨΟΖ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Air Si	urveyor 4	Πτήση	1-2	40	N-	S-E-W	-		Κατακόρυφ	η	80	80	307	
D	orone GPS A	ccuracy (1.	00m)				Grou	nd C	ontrol points ·	Check p	Check points (0.050m)			
(Camera Loc	ation Error	(cm)		Gro	und Cont	rol Points	Erro	or (cm)		Check F	oints Error	(cm)	
X error	Y error	Z error	Total err	or X	error	Y error	Z err	or	Total error	X erro	Y erro	r Z error	Tota	l error
9.04	7.69	14.69	18.89		1.12	1.38	3 2.	85	3.36	1.9	1 1.5	0 2.92		3.79

Στοιχεία πτήσης 7, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 1.00 m

	E	NI- 00		VIIIOE	ПРО	ΣΑΝΑ-					ЕПІКА	ЛΥΨΗ	Fatas		
	Επιλυση	NO 22		ΫΨΟΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos		
Air S	urveyor 4	Πτήσ	iη 7	50	1	N-S	123		Κατακόρυφ	η	80	80	93		
Di	one GPS Ac	curacy (1.0	0m)				Groun	nd Co	ontrol points ·	· Check p	ck points (0.050m)				
С	amera Locat	ion Error (cm)		Grou	und Cont	rol Points	Erro	or (cm)		Check F	oints Error	(cm)		
X error	Y error	Z error	Total error	X e	rror	Y error	Z erro	or	Total error	X erro	Y erro	r Z error	Tota	l error	
36.42	19.62	9.54	42.45		4.86	3.45	2.8	37	6.61	4.1	2 3.5	4 4.23	5	6.89	

Πίνακας 24

Στοιχεία πτήσης 8, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 1.00 m

		No 22		VIIIOE	ΠΡΟΣ	EANA-					ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυση	NO 23		¥ΨUΣ	ΤΟΛΙΣ	ΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 8 Drone GPS Accuracy (1.00m)			50	E-	-W	216		Κατακόρυφ	η	80	80	94	
D	Air Surveyor 4 Πτήση 8 Drone GPS Accuracy (1.00m)						Grour	nd Co	ontrol points -	Check p	oints (0.05	0m)		
C	amera Locat	tion Error (c	m)		Grour	nd Conti	rol Points	Erro	or (cm)		Check F	oints Error (cm)	
X error	Y error	Z error	Total error	X e	rror	Y error	Z erro	or	Total error	X erro	Y erro	Z error	Total	error
18.42	33.94	21.81	44.36		2.96	4.46	2.5	56	5.93	1.8	7 4.1	3 2.72		5.29

Πίνακας 25

Στοιχεία πτήσεων 7-8, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 1.00 m

	E-12	- No 94		VIIIOS	ПРС	DΣANA-					ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	n 1NO 24		τΨΟΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Air Sı	Air Surveyor 4 Πτήση 7-8 Drone GPS Accuracy (1.00m)		7-8	50	N-3	S-E-W	-		Κατακόρυφ	η	80	80	187	
D	Air Surveyor 4 Πτήση 7-8 Drone GPS Accuracy (1.00m)		00m)				Grou	nd C	ontrol points ·	Check p	oints (0.05	i0m)		
C	Camera Loca	ation Error	(cm)		Gro	und Cont	rol Points	s Err	or (cm)		Check F	oints Error	(cm)	
X error	Y error	Z error	Total err	orXe	error	Y error	Z err	or	Total error	X erro	Y erro	r Z error	Tota	l error
9.99	8.46	14.57	19.59		1.02	1.21	L 2.	24	2.74	1.8	2 1.4	5 2.48	3	3.40

Στοιχεία πτήσης 9, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 1.00 m

	E	- NI- 25		VIIIOS	ПРО	ΣΑΝΑ-	FONIA				ΕΠΙΚΑ	ЛΥΨΗ	Fatas	
	Επιλυσι	ן 10 25		ΫΨΟΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 9 Drone GPS Accuracy (1.00m)				1	N-S	123		Κατακόρυφ	νη	80	80	64	
Di	Air Surveyor 4 Πτηση 9 Drone GPS Accuracy (1.00m)						Grour	nd C	ontrol points	- Check p	oints (0.05	0m)		
С	amera Loca	tion Error	(cm)		Grou	und Cont	rol Points	Erro	or (cm)		Check F	oints Error	(cm)	
X error	Y error	Z error	Total error	X e	rror	Y error	Z erro	or	Total error	X erro	Y erro	r Z error	Tota	l error
19.77	31.24	6.61	36.97		1.44	3.47	2.2	21	4.36	2.7	9 2.5	1 2.63		4.58

Πίνακας 27

Στοιχεία πτήσης 10, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 1.00 m

	E-12	No 26		VIIIOE	ПРС	ΣΑΝΑ-					ЕПІКА	лүψн	Fatas	
	Επιλυσι	NO 20		YΨUΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 10 Drone GPS Accuracy (1.00m)			60	l	E-W	216		Κατακόρυφ	η	80	80	61	
[Air Surveyor 4 Πτήση 10 Drone GPS Accuracy (1.00m)						Grour	nd Co	ontrol points ·	Check p	oints (0.05	0m)		
	Camera Loca	ition Error (cm)		Gro	und Cont	rol Points	Erro	or (cm)		Check F	oints Error	(cm)	
X error	Y error	Z error	Total error	Χe	error	Y error	Z erro	or	Total error	X erro	r Yerro	r Z error	Tota	l error
8.44	17.20	15.09	24.39		4.52	3.36	5 0.9	95	5.71	2.9	7 2.4	6 3.17		4.99

Πίνακας 28

Στοιχεία πτήσεων 9-10, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 1.00 m

	E-12	No 27		VIIIOE	ПРС)ΣANA-					ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσι	NO 27		YΨUΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAWEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air Sur	Air Surveyor 4 Πτήση 9-10 Drone GPS Accuracy (1.00m)			60	N-5	S-E-W	-		Κατακόρυφ	η	80	80	125	
Dr	Air Surveyor 4 Πτήση 9-10 Drone GPS Accuracy (1.00m)						Grour	nd C	ontrol points	Check p	oints (0.05	0m)		
C	amera Loca	tion Error (d	:m)		Gro	und Cont	rol Points	Err	or (cm)		Check F	oints Error	cm)	
X error	Y error	Z error	Total error	Χe	error	Y error	Z erro	or	Total error	X erro	Y erro	r Z error	Total	error
10.50	7.73	22.32	25.85		1.21	1.94	2.4	47	3.37	1.9	7 1.6	2 2.82		3.81

Στοιχεία πτήσης 1, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 20.00 m

	E	N- 20		VIIIOE	ПРО	ΟΣΑΝΑ-					ЕПІКА	ЛΥΨΗ	Fatas	
	Επιλυση	NO 28		¥ΨΟΣ	то/	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 1 Drone GPS Accuracy (20.00m)					N-S	123		Κατακόρυ¢	η	80	80	159	
Dr	Drone GPS Accuracy (20.00m)						Groun	nd C	ontrol points	- Check p	oints (0.05	i0m)		
C	amera Locat	tion Error (cm)		Gro	und Cont	rol Points	Erre	or (cm)		Check I	oints Error	(cm)	
X error	Y error	Z error	Total error	х	error	Y error	Z erro	or	Total error	X erro	Y erro	r Z error	Tota	l error
23.10	19.68	10.14	32.00		4.44	4.18	1.7	71	6.34	4.3	4 2.9	5 2.71		5.91

Πίνακας 30

Στοιχεία πτήσης 2, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 20.00 m

	E	No 20			ΠΡΟΣ	ΣΑΝΑ-					ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυση	NO 29		τΨΟΣ	τολι	ΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 2 Drone GPS Accuracy (20.00m)			40	E-	-W	214		Κατακόρυφ	η	80	80	148	
Dr	Air Surveyor 4 Πτήση 2 Drone GPS Accuracy (20.00m)						Groun	d Con	ntrol points -	Check p	oints (0.05	0m)		
C	Camera Locat	tion Error (c	m)		Grou	nd Conti	ol Points	Error	r (cm)		Check F	oints Error	(cm)	
X error	Y error	Z error	Total error	X er	ror	Y error	Z erro	or 1	Total error	X erro	Y erro	r Z error	Tota	l error
13.86	25.69	18.97	34.82	3	3.42	3.67	1.9	92	5.38	2.2	2 3.6	0 2.49		4.91

Πίνακας 31

Στοιχεία πτήσεων 1-2, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 20.00m

	E-floor	- No 20		VIIIO	ПРО	ΟΣΑΝΑ-					ΕΠΙΚΑ	ЛҮѰН	Fotos	
	Επιλυσ	II INO 30		1402	то/	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Air Si	Air Surveyor 4 Πτήση 1-2 Drone GPS Accuracy (20.00m)		ן 1-2	40	N-	S-E-W	-		Κατακόρυφ	νη	80	80	307	
Di	Air Surveyor 4 Πτήση 1-2 Drone GPS Accuracy (20.00m)						Grou	nd C	ontrol points	- Check p	oints (0.05	0m)		
	Camera Loc	ation Error	(cm)		Gro	und Cont	rol Points	Err	or (cm)		Check F	oints Error	(cm)	
X error	Y error	Z error	Total err	or X	error	Y error	Z erro	or	Total error	X erro	Y erro	r Zerror	Tota	error
8.91	7.76	17.63	21.22		0.64	1.25	5 2.	18	2.60	1.4	3 1.3	3 2.85		3.48

Στοιχεία πτήσης 7, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 20.00 m

	E-11	No 21		VIIIO	, про	ΟΣΑΝΑ-					ΕΠΙΚΑ	ЛҮѰН	Fotos	
	Επιλυση	NO 31		ŶΨŬ	2 то/	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 7 Drone GPS Accuracy (20.00m)			50		N-S	123		Κατακόρυφ	νη	80	80	93	
Dr	Air Surveyor 4 Πτηση 7 Drone GPS Accuracy (20.00m)						Groun	nd Co	ontrol points ·	- Check p	oints (0.05	0m)		
C	Camera Locat	tion Error (d	m)		Gro	und Cont	rol Points	Erro	or (cm)		Check F	oints Error	(cm)	
X error	Y error	Z error	Total error	x	(error	Y error	Z erro	or	Total error	X erro	Y erro	r Z error	Tota	l error
40.33	21.27	11.63	47.06		4.70	3.61	1.5	52	6.12	3.6	3.5	6 3.44		6.17

Πίνακας 33

Στοιχεία πτήσης 8, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 20.00 m

	E-11	No 22			ПРО	ΣΑΝΑ-					ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυση	NO 32		ΫΨΟΣ	τολι	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 8 Drone GPS Accuracy (20.00m)			50	E	-W	216		Κατακόρυφ	η	80	80	94	
Dr	Air Surveyor 4 Πτήση 8 Drone GPS Accuracy (20.00m)						Groun	nd Co	ontrol points -	Check p	oints (0.05	0m)		
C	amera Locat	tion Error (c	m)		Grou	ind Cont	rol Points	Erro	or (cm)		Check F	oints Error	(cm)	
X error	Y error	Z error	Total error	X er	rror	Y error	Z erro	or	Total error	X erro	Y erro	r Z error	Total	error
20.54	37.53	22.03	48.13	3	3.04	3.94	1.3	35	5.16	1.8	5 3.8	2 2.97		5.18

Πίνακας 34

Στοιχεία πτήσεων 7-8, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 20.00 m

	E-11	- No 22		VIIIOE	ПРС	DΣANA-					ЕПІКА	лүψн	Fatas	
	Επιλυσ	n 190 33		τΨΟΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAWEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air Si	urveyor 4	Πτήση	7-8	50	N-3	S-E-W	-		Κατακόρυφ	νη	80	80	187	
D	rone GPS A	curacy (20.	00m)				Grou	nd C	ontrol points	- Check p	oints (0.05	i0m)		
	Camera Loca	ation Error	(cm)		Gro	und Cont	rol Points	Err	or (cm)		Check F	oints Error	(cm)	
X error	Y error	Z error	Total erro	or Xe	error	Y error	Z erro	or	Total error	X erro	Y erro	r Z error	Tota	l error
9.86	8.92	16.89	21.49		0.67	1.14	1.9	90	2.32	1.5) 1.3	6 2.52	2	3.24

Στοιχεία πτήσης 9, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 20.0 0m

	E-11	No 24		VIIIO	, про	ΟΣΑΝΑ-					ΕΠΙΚΑ	ЛҮΨΗ	Fatas	
	Επιλυση	INO 34		¥ΨU	2 то/	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air S	Air Surveyor 4 Πτήση 9 Drone GPS Accuracy (20.00m)			60		N-S	123		Κατακόρυ¢	νη	80	80	64	
Dr	Air Surveyor 4 Πτηση 9 Drone GPS Accuracy (20.00m)						Grour	nd C	Control points	- Check p	oints (0.05	0m)		
C	Camera Locat	tion Error (:m)		Gro	und Cont	rol Points	Err	or (cm)		Check F	oints Error	(cm)	
X error	Y error	Z error	Total error	>	(error	Y error	Z erro	or	Total error	X erroi	Y erro	r Z error	Tota	l error
23.72	37.77	26.73	52.00		1.44	3.84	1.2	22	4.28	2.9	5 2.7	1 2.35	5	4.65

Πίνακας 36

Στοιχεία πτήσης 10, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 20.00 m

	E	No 25		VIIIOE	ПРО	ΣΑΝΑ-	FONIA				ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυση	INO 35		ΫΨΟΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air Su	Air Surveyor 4 Πτήση 10			60	E	-W	216		Κατακόρυφ	η	80	80	61	
Dr	Drone GPS Accuracy (20.00m)						Grour	nd Co	ontrol points -	Check p	oints (0.05	0m)		
C	Drone GPS Accuracy (20.00m) Camera Location Error (cm)				Grou	und Cont	rol Points	Erro	or (cm)		Check F	oints Error	(cm)	
X error	Camera Location Error (cm) error Y error Z error error			X e	rror	Y error	Z erro	or	Total error	X erro	Y erro	r Z error	Tota	l error
10.77	20.60	51.63	56.63		3.54	3.11	. 0.2	26	4.73	2.5	7 2.1	2 3.84		5.09

Πίνακας 37

Στοιχεία πτήσεων 9-10, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 20.00 m

	E-12	No 29		VIIIOE	ПРС	DΣANA-	FONUA				ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσι	110 38		YΨUΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air Sur	Air Surveyor 4 Πτήση 9-10 Drone GPS Accuracy (20.00m)				N-3	S-E-W	-		Κατακόρυ¢	η	80	80	125	
Dre	Drone GPS Accuracy (20.00m)						Grour	nd C	ontrol points	Check p	oints (0.05	0m)		
C	Drone GPS Accuracy (20.00m) Camera Location Error (cm)				Gro	und Cont	rol Points	Err	or (cm)		Check F	oints Error	(cm)	
X error	Camera Location Error (cm) error Y error Z error Tota erro			Xe	error	Y error	Z erro	or	Total error	X erro	r Yerro	r Z error	Total	error
12.82	8.54	62.87	64.74		1.02	1.89) 1.8	81	2.81	1.6	3 1.4	6 3.16		3.84

Στοιχεία πτήσεων 1-2-3-4-5-6, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 0.05 m

	E-12	No 27		VIIIOS	ΠΡΟΣΑΝΑ-			EΠ	ΙΚΑΛΥΨΗ	Fotos	
	Επιλυ	ση 1\0 37		tΨUZ	τολιέμος	I MIA	KAIVIEPA	ΜΗΚΟΣ	ΠΛΑΤΟ	Σ	
Air Surve	eyor 4	Πτήση 1-2-3	-4-5-6	40	N-S-E-W	-	Κατακόρυφr & Πλάγιες	ן 80 60	80 40	566	
D	Drone GPS Accuracy (0.05m)					Gro	und Control poi	ints - Check p	oints (0.050m	ı)	
C	Drone GPS Accuracy (0.05m) Camera Location Error (cm)				Ground Cont	rol Points	Error (cm)		Check Points	Error (cm)	
X error	Y error	Z error	Total erro	or err	(Y or error	Z error	Total error	X error	Y error	Z error	Total error
6.76	6.46	2.82	9.77	-		-	-	1.93	3.51	15.65	16.16

Πίνακας 39

Στοιχεία πτήσεων 1-2-3-4-5-6, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 20.00 m

	E-{}	No 29		VIIIO	ПРС	DΣANA-				ЕПІКА	лүψн	Fatas	
	Επιλυ	51 INO 38		YΨU2	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air Surv	ir Surveyor 4 Πτήση 1-2-3-4-5-6 Drone GPS Accuracy (20.00m)			40	N-:	S-E-W	-	Ko	ατακόρυφη & Πλάγιες	80 60	80 40	566	
D	Drone GPS Accuracy (20.00m)						Groun	d Co	ntrol points -	Check poin	ts (0.050m)	
	Drone GPS Accuracy (20.00m) Camera Location Error (cm)				Gro	und Cont	rol Points	s Erro	or (cm)		Check Poin	ts Error (cn	n)
X error	Camera Location Error (cm) error Y error Z error Total			or X	error	Y error	Z err	or	Total error	X error	Y error	Z error	Total error
8.16	7.41	18.83	21.82		0.72	1.61	. 2.	42	3.00	1.43	1.43	2.03	3.00

Πίνακας 40

Στοιχεία πτήσεων 1-2-3-4-5-6, Επίλυση Air Surveyor 4, με χρήση όλων των GCP, accuracy 0.05m - GPS DRONE, accuracy 20.00 m

	E-12	No 20		VIIIOE	ПРО	ΣΑΝΑ-		KA		ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυ	51J INO 39		YΨUΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ	КА	IVIEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Air Surv	ir Surveyor 4 Πτήση 1-2-3-4-5-6 Drone GPS Accuracy (20.00m)			40	N-S	S-E-W	-	Κατα & Γ	ακόρυφη Πλάγια	80 60	80 40	566	
Di	Drone GPS Accuracy (20.00m)						Grou	nd Cont	trol points	- Check poi	ints (0.050r	n)	
0	Drone GPS Accuracy (20.00m) Camera Location Error (cm)				Gro	und Cor	ntrol Poir	nts Error	r (cm)		Check Po	ints Error	(cm)
X error	Camera Location Error (cm) error Y error Z error Total e			or X e	error	Y erro	or Ze	rror ⁻	Total error	X error	Y error	Z error	Total error
8.09	7.17	18.22	21.19	1	.15	1.43	2.	17	2.84	-	-	-	-

Στοιχεία πτήσεων 1-2-4, Επίλυση Air Surveyor 4, με χρήση GPS DRONE, accuracy 0.05 m

	Entime	n No 40		VIIIOS	ПР	ΟΣΑΝΑ-			EΠ	ΙΚΑΛΥΨΗ	Fotos	
	Επιλυσ	II 110 40		1402	то	ΛΙΣΜΟΣ	ISZINIA	KAIVIEPA	мнкоз	ΠΛΑΤΟ	Σ	
Air Sur	rveyor 4	Πτήση 1	2-4	40	N	I-S-E-W	-	Κατακόρυφr & Πλάγια) 80 60	80 40	366	
D	Drone GPS Accuracy (0.05m)						Gro	ound Control po	oints - Check	points (0.050	m)	
C	Drone GPS Accuracy (0.05m) Camera Location Error (cm)				Grou	und Contro	ol Points	Error (cm)		Check Point	ts Error (cm)	
X error	Y error	Z error	Total err	or e	X rror	Y error	Z error	Total error	X error	Y error	Z error	Total error
6.97	5.80	1.95	9.27		-	-	-	-	2.61	4.43	15.92	16.73

Πίνακας 42

Στοιχεία πτήσεων 1-2-4, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 20.00 m

	E-ila	n No 41		VIIIOS	ПРС)ΣANA-			ЕПІКА	λγψΗ	Fatas	
	Επιλυσ	ų 1 \0 41		τΨΟΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ	KAIVIEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Air Su	Air Surveyor 4 Πτήση 1-2-4		-2-4	40	N-:	S-E-W	-	Κατακόρυφη & Πλάγια	80 60	80 40	366	
Di	Drone GPS Accuracy (20.00m)						Grou	d Control points	- Check poi	nts (0.050m	ı)	
C	Drone GPS Accuracy (20.00m) Camera Location Error (cm)				Gro	und Cont	rol Points	Error (cm)		Check Poir	nts Error (o	cm)
X error	Y error	Z error	Total err	or X e	error	Y error	Z erre	or Total error	X error	Y error	Z error	Total error
8.55	6.71	19.44	22.27	0	.72	1.61	2.42	3.00	1.43	1.43	2.21	3.00

Πίνακας 43

Στοιχεία πτήσεων 1-2-4, Επίλυση Air Surveyor 4, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 20.00 m

	E-the	n No 42		VIIIC		ΣΑΝΑ-	FONIA			ЕПІКА	лүψн	Fatas	
	Επιλυσ	n 110 42		τΨC		ΙΣΜΟΣ	I MIA	ĸ	AIVIEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Air Su	Air Surveyor 4 Πτήση 1-2-4 Drone GPS Accuracy (20.00m)			40	N-5	6-E-W	-	Κα1 &	τακόρυφη ι Πλάγια	80 60	80 40	366	
Di	Drone GPS Accuracy (20.00m)						Grou	nd Co	ntrol points	- Check poi	nts (0.050r	n)	
0	Drone GPS Accuracy (20.00m) Camera Location Error (cm)				Gro	ound Cor	ntrol Poin	ts Erro	or (cm)		Check Po	ints Error	(cm)
X error	error Y error Z error Total e			or	X error	Y erro	or Zer	ror	Total error	X error	Y error	Z error	Total error
8.54	6.47	18.80	21.65		1.15	1.43	2.3	17	2.84	-	-	-	-

Στοιχεία πτήσεων 1-2-4, Επίλυση Air Surveyor 4, με χρήση όλων των GCP πλην των 3, 23, 34, 35, 37, 48, 59, 41, accuracy 0.05m - GPS DRONE, accuracy 20.00 m

	E-12	- No 42		(1105	ΠΡΟΣΑΝΑ				ЕПІКА	λγψΗ	Fatas	
	Επιλυσ	n 190 43	T	ΨΟΖ	τολιεμο			KAIVIEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Air Survey	yor 4	Πτήση 1	-2-4	40	N-S-E-W		-	Κατακόρυφη & Πλάγια	80 60	80 40	366	
D	Drone GPS Accuracy (20.00m)					(Ground	Control points	- Check poi	nts (0.050n	ו)	
(Camera Location Error (cm)				Ground Co	ntrol P	Points E	rror (cm)		Check Poi	nts Error (o	cm)
X error	Y error	Z error	Total error	X e	rror Y er	or	Z error	Total error	X error	Y error	Z error	Total error
8.48	6.17	17.58	20.48	1.	10 1.3	5	1.91	2.59	1.19	1.17	4.09	4.42

Πίνακας 45

Στοιχεία πτήσης 13, Επίλυση Phantom 4 pro V2, με χρήση GPS DRONE, accuracy 10.00 m

	E-12	Na	4	VIIIO	, ПР	ΟΣΑΝΑ-		KANAF	DA	ΕΠΙΚΑ	лүψн	Fotos	
	Επιλυσ	η INO 4	4	τΨU	″ то	ΛΙΣΜΟΣ	ΙΩΝΙΑ	KAIVIE	PA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Phant	Phantom 4 pro V2 Πτήση 13 Camera Accuracy (10.00m)			40		N-S	-	Κατακόρυφη		80	80	326	
	Camera Accuracy (10.00m)						Grou	ind Control poi	ints - Check	points (0.)50m)		
(Camera Accuracy (10.00m) Camera Location Error (m)				Gro	und Contr	ol Points	Error (m)		Check I	Points Error	(m)	
X error	Camera Location Error (m) error Y error Z error Total er			or	X error	Y error	Z error	Total error	X error	Y error	Z error	Tota	al error
0.59	0.39	2.02	2.14		-	-	-	-	0.88	0.04	81.53		81.54

Πίνακας 46

Στοιχεία πτήσης 14, Επίλυση Phantom 4 pro V2, με χρήση GPS DRONE, accuracy 10.00 m

	Entime	n No /	5	VIII		ΡΟΣΑΝΑ-			24	ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσι	1 110 4	5	īΨ		ολιεμοε	ΙΩΝΙΑ	KAIVIE	A	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Phant	Phantom 4 pro V2 Πτήση 14 Camera Accuracy (10.00m)			40	0	E-W	-	Κατακόρυφη		80	80	267	
0	Camera Accuracy (10.00m)						Grou	nd Control poi	nts - Check	points (0.0)50m)		
(Camera Accuracy (10.00m) Camera Location Error (m)				Gr	ound Cont	rol Points	Error (m)		Check P	oints Error	(m)	
X error	Camera Location Error (m) error Y error Z error Total				X error	Y error	Z error	Total error	X error	Y error	Z error	Tot	al error
0.17	0.17	0.52	0.64		-	-	-	-	0.58	0.48	79.0	8	79.08

Στοιχεία πτήσεων 13-14, Επίλυση Phantom 4 pro V2, με χρήση GPS DRONE, accuracy 10.00 m

	E	- N- 46		VIIIO	ПР	ΟΣΑΝΑ-		KANAFI		ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσι] NO 46		¥ΨΟ2	то	ΛΙΣΜΟΣ	ΙΩΝΙΑ	KAIVIEI	A	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Phanto	Phantom 4 pro V2 Πτήση 13-14 Camera Accuracy (10.00m)			40	N	-S-E-W	-	Κατακόρυφη		80	80	593	
0	Camera Accuracy (10.00m)						Grou	nd Control poin	ts - Check	points (0.0	50m)		
	Camera Accuracy (10.00m) Camera Location Error (m)				Gro	und Conti	rol Points	Error (m)		Check P	oints Error (m)	
X error	Camera Location Error (m) error Y error Z error Total e			or	X error	Y error	Z error	Total error	X error	Y error	Z error	Tota	l error
0.45	0.42	2.06	2.16		-	-	-	-	0.74	0.24	80.26		80.26

Πίνακας 48

Στοιχεία πτήσεων 13-14-15, Επίλυση Phantom 4 pro V2, με χρήση GPS DRONE, accuracy 10.00 m

	E-flag	No 17		VIIIOS	ПР	ΟΣΑΝΑ-		KANAF	DA	ΕΠΙΚΑ	лүψн	Fotos	
	Επιλυσι	1 10 47		¥ΨΟΣ	то	ΛΙΣΜΟΣ	ΙΩΝΙΑ	KAIVIE	PA	ΜΗΚΟΣ	ΠΛΑΤΟΣ		
Phanton	hantom 4 pro V2 Πτήση 13-14-15			40	N	I-S-E-W	-	Κατακόρυφη	& Πλάγια	80	80	665	
	Camera Accuracy (10.00m)						Grou	nd Control poi	nts - Check	points (0.05	i0m)		
(Camera Loc	ation Error	' (m)		Gro	und Contr	ol Points	Error (m)		Check Po	ints Error (n	n)	
X error	Y error	Z error	Total erro	or e	X ror	Y error	Z error	Total error	X error	Y error	Z error	Total	error
0.44	0.43	2.08	2.17		-	-	-	-	0.79	0.29	80.01		80.02

Πίνακας 49

Στοιχεία πτήσης 13, Επίλυση Phantom 4 pro V2, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 10.00 m

	E-{)	n Na 4)	VIIIC		ΟΣΑΝΑ-	FONIA				ΕΠΙΚΑ	лүψн	Fatas	
	Phantom 4 pro V2 Πτήση 13					ΛΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Phan	Phantom 4 pro V2 Πτήση 13			40	כ	N-S	-	Κα	τακόρυφη		80	80	326	
	Phantom 4 pro V2 Πτήση 13 Camera Accuracy (10.00m)						Grour	nd Co	ontrol points	- Check p	oints (0.050)m)		
	Camera Accuracy (10.00m) Camera Location Error (m)				Gro	und Conti	rol Points	Erro	or (cm)		Check P	oints Error (cm)	
X error	Y error	Z erroi	Total er	or	X error	Y error	Z erro	or	Total error	X error	Y error	Z error	Te ei	otal rror
0.81	0.45	81.10	81.10		5.63	6.34	11.	.24	14.09	4.16	6 4.71	. 12.2	7	13.79

Στοιχεία πτήσης 13, Επίλυση Phantom 4 pro V2, με χρήση όλων των GCP, accuracy 0.05m - GPS DRONE, accuracy 10.00 m

	E-41	NI (0	VIII		ΟΣΑΝΑ-	FON				ЕПІКА	Λ ΥΨΗ	Fatas	
	Επιλυσ	η ΙΝΟ 4	9	ΥΨ	то.	ΛΙΣΜΟΣ	TΩN		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Phant	Phantom 4 pro V2 Πτήση 13				0	N-S	-	Кс	ατακόρυφη		80	80	326	
	Camera Accuracy (10.00m)						Gr	round C	Control points - C	heck p	oints (0.0	50m)		
	Camera Loo	cation Er	ror (m)		Gr	ound Cor	ntrol P	Points E	rror (cm)		Check	Points Erro	r (cm)	
X error	Y error	Z erro	r Total er	ror	X error	Yerro	or Z	Z error	Total error	X erro	r erro	Z or error	Total	error
0.80	0.46	81.26	81.26		1.22	1.5	53	2.47	3.15	-	-	-		-

Πίνακας 51

Στοιχεία πτήσης 14, Επίλυση Phantom 4 pro V2, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 10.00 m

	Entime	n No 5	0	VIIIO	, про	ΟΣΑΝΑ-		KANAF	24	ΕΠΙΚΑ	лүψн	Fotos	
	Επιλυσ	II INO 5	U	τΨU	2 то/	ΙΣΜΟΣ	IMA	KAIVIE	A	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Phan	Phantom 4 pro V2 Πτήση 14 Campera Accuracy (10.00m)			40		E-W	-	Κατακόρυφη		80	80	267	
	Phantom 4 pro V2 Πτήση 14 Camera Accuracy (10.00m)						Groun	d Control poin	ts - Check p	oints (0.05	0m)		
	Camera Loo	ation Er	ror (m)		Gro	und Contr	ol Points	Error (cm)		Check P	oints Error (cm)	
X error	Y error	Z erro	r Total eri	or X	(error	Y error	Z erro	r Total erro	X error	Y error	Z error	Tota	l error
0.43	0.72	78.94	78.94		4.32	5.75	8.8	3 11.3	3.34	4.20	11.21		12.43

Πίνακας 52

Στοιχεία πτήσης 14, Επίλυση Phantom 4 pro V2, με χρήση όλων των GCP, accuracy 0.05m - GPS DRONE, accuracy 10.00 m

	E-{)			VIIIOT	ПРО	ΣΑΝΑ-	FONU				ЕПІК	ΑΛΥΨΗ	Eata	
	Επιλυσ	η 10 51		¥ΨUΣ	тол	ΙΣΜΟΣ	1 1 2 1 1 1 4	•	KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟ	Σ	•
Phan	tom 4 pro V	/2 N	τήση 14	40	E	-W	-	Κα	τακόρυφη		80	80	267	
	Camera Accuracy (10.00m)						Gro	und Co	ontrol points - C	heck p	oints (0.0	50m)		
	Camera Loo	ation Erro	or (m)		Gro	und Con	ntrol Po	ints Er	ror (cm)		Check	Points E	ror (cm)	
X error	Camera Location Error (m)				error	Y erro	r Z	error	Total error	Х	Y	Z	Tot	al error
0.42	0.74	79.08	79.08		1.2/	16	50	2 95	3 58	erro	erro	erro		_
0.42	0.74	79.08	79.08		1.24	1.0	0	2.95	5.56	-	-	-		-

Στοιχεία πτήσεων 13-14, Επίλυση Phantom 4 pro V2, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 10.00 m

	F - 40 ··· -			VIIIOE	ПРО	ΣANA-	FONUA				ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	η Νο 52		¥ΨΟΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Phanto	Phantom 4 pro V2 Πτήση 13-14			40	N-S	Б-Е-W	-	Κατο	ικόρυφη		80	80	593	
(Camera Accuracy (10.00m)						Gro	ind Con	ntrol points - (Check po	nts (0.050	m)		
	Camera Loo	ation Error	(m)		Gro	und Con	trol Poin	ts Error	r (cm)		Check I	Points Error	(cm)	
X error	Camera Location Error (m) error Y error Z error Total e			or X	error	Y erro	or Z	error	Total error	X erro	Y erro	or Z erro	r Tota erro	al or
0.68	0.59	79.95	79.96		10.30	11.	52	19.84	25.15	8.1	6 8.6	59 21.	38 24	1.48

Πίνακας 54

Στοιχεία πτήσεων 13-14, Επίλυση Phantom 4 pro V2, με χρήση όλων των GCP, accuracy 0.05m – GPS DRONE, accuracy 10.00 m

	E-floor	n No 52		VIIIOT	ПРО	ΣΑΝΑ-					ΕΠΙΚ	ΑΛΥΨΗ	Fatas	
	Επιλυσ	II INO 55		τΨUZ	тол	ΙΣΜΟΣ	I MIA		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Phanto	Phantom 4 pro V2 Πτήση 13-14				N-S	S-E-W	-	Κατ	τακόρυφη		80	80	593	
	Camera Accuracy (10.00m)						Gro	ind Co	ontrol points - C	heck p	oints (0.0	50m)		
	Camera Loo	ation Error	(m)		Gro	und Con	trol Poi	nts Eri	ror (cm)		Check	Points Erro	or (cm)	
X error	Y error	Z error	Total erro	or Xe	error	Y erro	r Ze	rror	Total error	X erro	Y or erro	Z or error	Total	error
0.65	0.60	80.24	80.25		1.51	1.9)7	2.78	3.73	-	-	-		-

Πίνακας 55

Στοιχεία πτήσεων 13-14-15, Επίλυση Phantom 4 pro V2, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 10.00 m

	E-ila	n No 54		VIIIOT	ПРС	DΣANA-					ЕПІКА	лүψн	Fatas	
	Επιλυσ	I INO 54		¥ΨΟΣ	тол	ΙΣΜΟΣ	IΩNIA		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Phantor	Phantom 4 pro V2 Πτήση 13-14-15			40	N-	S-E-W	-	Ко	ατακόρυφη & Ι	Ίλάγια	80	80	665	
	Phantom 4 pro V2 Πτήση 13-14-15 Camera Accuracy (10.00m)						Grou	nd C	Control points	- Check p	oints (0.05	0m)		
	Camera Loc	ation Error	(m)		Gro	und Cont	rol Point	s Err	or (cm)		Check F	oints Error	(cm)	
X error	Y error	Z error	Total err	or X	error	Y error	Z err	or	Total error	X erro	r Y erro	r Z erro	Tota	lerror
0.67	0.63	80.02	80.02		0.69	0.83	3 0.	.64	1.26	1.4	0 1.3	7 2.8	5	3.47

Στοιχεία πτήσεων 13-14-15, Επίλυση Phantom 4 pro V2, με χρήση όλων των GCP, accuracy 0.05m – GPS DRONE, accuracy 10.00 m

	F 12	- NI- 55		VIIIOT	ПРО	ΣΑΝΑ-	FONU				ЕПІК	λγψΗ	Fatas	
	Επιλυσ	η INO 35		ΫΨΟΣ	тол	ΙΣΜΟΣ	1 121117	•	KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Phantor	hantom 4 pro V2 Πτήση 13-14-15				N-S	S-E-W	-	Κατα	ακόρυφη & Πλά	ιγια	80	80	665	
(Camera Accuracy (10.00m)						Gro	und Co	ontrol points - C	heck p	oints (0.0	50m)		
	Camera Loc	ation Error	(m)		Gro	ound Cor	ntrol Po	ints Er	ror (cm)		Check	Points Err	or (cm)	
X error	Y error	Z error	Total erro	or Xe	error	Y erro	or Z	error	Total error	X erro	r erro	Z or erroi	Tota	l error
0.67	0.64	80.03	80.03		1.06	1.1	4	0.96	1.83	-	-	-		-

Πίνακας 57

Στοιχεία πτήσης 11, Επίλυση Parrot Anafi, με χρήση GPS DRONE, accuracy 10.00 m

	E-12	• No 56		VIIIOE	ΠΡΟΣΑ	ANA-		KANAF	DA	ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	n 190 20		YΨUΣ	τολιδι	ΜΟΣ	ΙΩΝΙΑ	KAIVIE	РА	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Parro	ParrotAnafi Πτήση 11				N-5	·S	123	Κατακόρ	υφη	80	80	131	
C	Camera Accuracy (10.00m)						Grour	d Control poin	ts - Check	points (0.0	50m)		
	Camera Loc	ation Error	[.] (m)		Ground	l Contr	ol Points	Error (m)		Check Po	oints Error (m)	
X error	Y error	Z error	Total err	or er	K ror e	Y error	Z error	Total error	X error	Y error	Z error	Total	error
0.49	0.96	0.37	1.14		-	-	-	-	0.4904	0.8327	29.8966	29	€.9122

Πίνακας 58

Στοιχεία πτήσης 11 ,Επίλυση Parrot Anafi, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 10.00 m

	Entime	n No 57		VIIIOS	ΠΡΟΣΑ	NA-				ΕΠΙΚΑ	лүψн	Fotos	
	Επιλυσ	n 190 57		YΨUΣ	τολιΣΝ	νοΣ	ΙΩΝΙΑ	KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Parr	ParrotAnafi Πτήση 11				N-S	5	123	Κατακόρυ¢	νη	80	80	131	
	Camera Accuracy (10.00m)						Groun	Control points	- Check p	oints (0.05	0m)		
	Camera Loo	ation Error	(m)		Ground	d Conti	ol Points	Error (m)		Check I	Points Error	(m)	
X error	Y error	Z error	Total erro	or Xe	rror Y	error	Z erro	Total error	X erro	· Y erro	r Zerror	Tota	l error
0.90	1.44	22.88	22.94	0.0	0720 0	0.0508	0.847	4 0.1223	0.053	7 0.051	0 0.1512		J.1684

Στοιχεία πτήσης 12, Επίλυση Parrot Anafi, με χρήση GPS DRONE, accuracy 10.00 m

	E-12	- No 59		VIIIOT	ПРС	ΟΣΑΝΑ-	FONIA	KANAF	DA	ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	η 1\0 58		ΥΨΟΣ	тол	ΛΙΣΜΟΣ	ΙΩΝΙΑ	KAIVIE	РА	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Parr	ParrotAnafi Πτήση 12					E-W	214	Κατακόρ	ουφη	80	80	159	
(ParrotAnafi Πτηση 12 Camera Accuracy (10.00m)						Grou	nd Control poi	nts - Check	points (0.05	i0m)		
	Camera Loc	ation Error	[.] (m)		Grou	Ind Contr	rol Points	Error (m)		Check Po	oints Error (n	n)	
X error	Y error	Z error	Total err	or er	X ror	Y error	Z error	Total error	X error	Y error	Z error	Total	error
0.87	0.38	0.36	1.02		-	-	-	-	0.1250	0.2081	26.1254	26	5.1266

Πίνακας 60

Στοιχεία πτήσης 12, Επίλυση Parrot Anafi, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 10.00 m

	E-12	- No 50		VIIIOT	ПРО	ΣΑΝΑ-	FONUA				ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	n 190 59		¥ΨΟΣ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos	
Parr	arrotAnafi Πτήση 12		12	40	E	-W	214		Κατακόρυφ	η	80	80	159	
Camera Accuracy (10.00m)		0m)				Grour	nd Co	ontrol points -	Check p	oints (0.05	0m)			
-	Camera Location Error (m)			Gro	und Cont	rol Point:	s Err	or (m)		Check	Points Error	(m)		
X error	Y error	Z error	Total err	or X e	error	Y error	Z erro	rror Total error X error Y error Z error		Tota	l error			
0.99	0.68	22.50	22.53	0.	0560	0.0526	0.07	97	0.1107	0.059	2 0.034	8 0.1633).1772

Πίνακας 61

Στοιχεία πτήσεων 11-12, Επίλυση Parrot Anafi, με χρήση GPS DRONE, accuracy 10.00 m

	E-12	- No (0		VIIIOE	ПРС	ΟΣΑΝΑ-				ΕΠΙΚΑ	лүψн	Fatas	
	Επιλυσ	η πο ου		τΨΟΣ	то/	ΙΣΜΟΣ	ΙΩΝΙΑ	KAIVIEP	A	ΜΗΚΟΣ ΠΛΑΤΟΣ		Fotos	
Parrot	tAnafi	Πτήση 11-	-12	40	N-	S-E-W	-	Κατακόρι	υφη	80	80	290	
	Camera Accuracy (10.00m)			Ground Control poi				s - Check	points (0.0	50m)			
	Camera Accuracy (10.00m)				Grou	und Conti	rol Points	Error (m)		Check P	oints Error	(m)	
X error	Y error	Z error	Total erro	or X Y Z Total error X error Y error Z er		Z error	Total	error					
0.7451	0.7587	0.4108	1.1400		-	0.7451 0.7587		0.4108	1	1.1400			

Στοιχεία πτήσεων 11-12, Επίλυση Parrot Anafi, με χρήση GCP 1-9-34-46-60-66, accuracy 0.05m - GPS DRONE, accuracy 10.00 m

	E-flar	- No (1		VIIIOS	ПРО	ΣΑΝΑ-					ЕПІКА	лүψн	Fotos	
	Επιλυσ	η 1\0 01		τΨΟΖ	тол	ΙΣΜΟΣ	ΙΩΝΙΑ		KAIVIEPA		ΜΗΚΟΣ ΠΛΑΤΟΣ		FOLOS	
Parro	tAnafi	Πτήση 11-:	12	40	40 N-S-E-W -		Κατακόρυ¢	νη	80	80	290			
	Camera Aco	curacy (10.0	00m)			Ground Control points - Check poir					i0m)			
	Camera Loo	ation Error	(m)	Ground Control Points Error (m) Check Points			Points Error	(m)						
X error	Y error	Z error	Total erro	rror X error Y error Z error Total error X error Y error Z error			Tota	l error						
0.76	0.95	27.95	27.98	0.	0182	0.0315	5 0.07	18	0.0805	0.019	4 0.021	.2 0.111	5	0.1152

ΚΕΦΑΛΑΙΟ 3

3.1. Ανάλυση Αποτελεσμάτων Επιλύσεων

3.1.1.UAV Air Surveyor 4

1° Σετ επιλύσεων (επιλύσεις 1-9, πτήσεις 1, 2, 7, 8, 9, 10)

Στο πρώτο σετ επιλύσεων (1-9) περιλαμβάνονται οι πτήσεις με κατακόρυφη θέση κάμερας. Συγκεκριμένα οι επιλύσεις 1, 2, 4, 5, 7 και 8 αφορούν πτήσεις μονής κατεύθυνσης, ενώ οι επιλύσεις 3, 6 και 9 αφορούν πτήσεις διπλής κατεύθυνσης. Στο σετ αυτό χρησιμοποιήθηκε συντελεστής βάρους για τις μετρήσεις GPS του UAV **1.00 m**, ενώ οι επιλύσεις έγιναν χωρίς τη συμμετοχή των φωτοσταθερών σημείων.

Πίνακας 63

		VIIOS	ΠΡΟΣΑΝΑ-	Pixel		ЕПІКА	АЛҮѰН	Estas
		YYUZ	τολισμοσ	size	KAWILPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	rotos
Επίλυση 1	Πτήση 1	40	N-S	1 cm	Κατακόρυφη	80	80	159
Επίλυση 2	Πτήση 2	40	E-W	1 cm	Κατακόρυφη	80	80	148
Επίλυση 3	Πτήση 1-2	40	N-S-E-W	1 cm	Κατακόρυφη	80	80	307
Επίλυση 4	Πτήση 7	50	N-S	1.3 cm	Κατακόρυφη	80	80	93
Επίλυση 5	Πτήση 8	50	E-W	1.3 cm	Κατακόρυφη	80	80	94
Επίλυση 6	Πτήση 7-8	50	N-S-E-W	1.3 cm	Κατακόρυφη	80	80	187
Επίλυση 7	Πτήση 9	60	N-S	1.5 cm	Κατακόρυφη	80	80	64
Επίλυση 8	Πτήση 10	60	E-W	1.5 cm	Κατακόρυφη	80	80	61
Επίλυση 9	Πτήση 9-10	60	N-S-E-W	1.5 cm	Κατακόρυφη	80	80	125

1° σετ επιλύσεων πτήσεων UAV Air Surveyor 4

	Dro	ne GPS Ac	curacy (1.0)0m)			Ground	Control	points - Che	eck points ((0.050m)	
	Can	nera Locat	ion Error ((cm)	Grour	nd Contro (ci	ol Points n)	Error		Check Poin	ts Error (cn	1)
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error
Επίλυση 1	8.21345	5.35084	1.25459	9.88263	-	-	-	-	21.97690	19.66960	10.04380	31.15690
Επίλυση 2	6.11734	9.12364	1.16404	11.04620	-	-	-	-	9.12364	1.16404	10.98470	11.04620
Επίλυση 3	8.63000	6.78271	1.04268	11.02580	-	-	-	-	2.09362	6.30485	19.08070	20.20410
Επίλυση 4	9.06747	6.11233	1.50673	11.03860	-	-	-	-	34.96630	22.98380	8.51408	42.70110
Επίλυση 5	6.95400	9.48629	1.39571	11.84470	-	-	-	-	18.29090	34.39380	23.90010	45.70230
Επίλυση 6	9.72104	9.45268	3.57757	14.02320	-	-	-	-	1.82751	2.98467	14.18700	14.61230
Επίλυση 7	6.47304	7.16830	1.85977	9.83583	-	-	-	-	27.41680	36.51630	25.03140	52.07390
Επίλυση 8	7.25518	4.66191	1.51229	8.75546	-	-	-	-	9.18379	24.54490	13.25490	29.36810
Επίλυση 9	10.50290	8.47423	5.44291	14.55160	-	-	-	-	1.94397	3.37623	60.95200	61.07630

Αποτελέσματα 1^{ου} σετ επιλύσεων πτήσεων UAV Air Surveyor 4

Στα παραπάνω αποτελέσματα φαίνεται ότι και στις τρεις διαφορετικές πτήσεις με ύψη 40, 50 και 60 m η επίλυση με πτήσεις διπλής διεύθυνσης έδωσε οριζοντιογραφική ακρίβεια (RMSE) στα σημεία ελέγχου (check points) καλύτερη από 10 cm. Όσον αφορά την υψομετρική ακρίβεια, διαπιστώνεται ότι σε καμία από τις επιλύσεις δεν επετεύχθη ακρίβεια καλύτερη από 10 cm, με βέλτιστο αποτέλεσμα εκείνο την επίλυσης 6 (ύψος πτήσης 50 μ, pixel size 1.3 cm).

20 Σετ επιλύσεων (επιλύσεις 10-18, πτήσεις 1, 2, 7, 8, 9, 10)

Στο δεύτερο σετ επιλύσεων (10-18), επιλύθηκαν οι ίδιες πτήσεις με το πρώτο σετ, αλλά με αύξηση του συντελεστή βάρους στο GPS σε **0.05 m.** Και σε αυτές τις επιλύσεις δεν συμμετείχαν τα φωτοσταθερά σημεία.

		VIIOS	ΠΡΟΣΑΝΑ-	Pixel		ЕШКА	АЛҮѰН	F adar
		YYUL	τολισμοσ	size	KAMEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos
Επίλυση 10	Πτήση 1	40	N-S	1 cm	Κατακόρυφη	80	80	159
Επίλυση 11	Πτήση 2	40	E-W	1 cm	Κατακόρυφη	80	80	148
Επίλυση 12	Πτήση 1-2	40	N-S-E-W	1 cm	Κατακόρυφη	80	80	307
Επίλυση 13	Πτήση 7	50	N-S	1.3 cm	Κατακόρυφη	80	80	93
Επίλυση 14	Πτήση 8	50	E-W	1.3 cm	Κατακόρυφη	80	80	94
Επίλυση 15	Πτήση 7-8	50	N-S-E-W	1.3 cm	Κατακόρυφη	80	80	187
Επίλυση 16	Πτήση 9	60	N-S	1.5 cm	Κατακόρυφη	80	80	64
Επίλυση 17	Πτήση 10	60	E-W	1.5 cm	Κατακόρυφη	80	80	61
Επίλυση 18	Πτήση 9-10	60	N-S-E-W	1.5 cm	Κατακόρυφη	80	80	125

2° σετ επιλύσεων πτήσεων UAV Air Surveyor 4

Πίνακας 66

Αποτελέσματα 2^{ου} σετ επιλύσεων πτήσεων UAV Air Surveyor 4

	Dr	one GPS A	Accuracy (().05 m)			Ground	Control	Control points - Check points (0.050m)				
	Ca	amera Loc	ation Erro	r (cm)	Grou	nd Conti (c	rol Point m)	s Error		Check Point	s Error (cm	l)	
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	
Επίλυση 10	7.48134	4.69155	1.21052	8.91327	-	-	-	-	22.02730	20.36830	17.38470	34.67420	
Επίλυση 11	5.16964	7.84567	1.18892	9.47065	-	-	-	-	13.16720	25.23010	9.85027	30.11580	
Επίλυση 12	8.27911	6.51832	0.96311	10.58110	-	-	-	-	1.92955	5.94219	13.30510	14.69900	
Επίλυση 13	7.61211	5.01183	1.25309	9.19961	-	-	-	-	32.84430	24.02710	11.00750	42.15700	
Επίλυση 14	5.80836	7.79275	1.40399	9.82014	-	-	-	-	19.20300	34.47890	7.40050	40.15370	
Επίλυση 15	8.97505	6.71266	1.25997	11.27820	-	-	-	-	1.17130	8.55740	11.38610	14.29140	
Επίλυση 16	2.74492	2.41861	1.95725	4.14910	-	-	-	-	0.34216	0.33029	1.07632	1.17670	
Επίλυση 17	3.69012	2.74432	1.67116	4.89296	-	-	-	-	5.81349	27.15600	74.52000	79.52660	
Επίλυση 18	3.51655	3.46063	4.22552	6.49593	-	-	-	-	1.53331	1.66322	70.41647	70.41640	

Και σε αυτά τα αποτελέσματα παρατηρούνται παρόμοιες λύσεις (οριακά μικρότερο σφάλμα), χωρίς να έχει παίξει ρόλο η αύξηση του συντελεστή βάρους της ακρίβειας του GPS του UAV. Και σε αυτό το σετ, οι επιλύσεις με πτήσεις διπλής διεύθυνσης εμφανίζουν μικρότερα σφάλματα RMS, με καλύτερη λύση αυτή της επίλυσης 6 (ύψος πτήσης 50 m, pixel size 1.3 cm).

3ο Σετ επιλύσεων (επιλύσεις 19-27, πτήσεις 1, 2, 7, 8, 9, 10)

Στο τρίτο σετ επιλύσεων (19-27) συμμετείχαν οι ίδιες πτήσεις με το πρώτο και δεύτερο σετ. Ο συντελεστής βάρους στο GPS του UAV ορίστηκε σε **1.00 m.** Επίσης, έγινε χρήση των φωτοσταθερών 1-9-34-46-60-66. Ο συντελεστής βάρους της ακρίβειας των φωτοσταθερών ορίστηκε σε **0.05 m.** Όλα τα υπόλοιπα σημεία χρησιμοποιήθηκαν ως σημεία ελέγχου.

Πίνακας 67

		VIIOS	ΠΡΟΣΑΝΑ-	Pixel	IZ A MED A	ЕПІКА	АЛҮѰН	Fataa
		1402	τολισμοσ	size	KAWIEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS
Επίλυση 19	Πτήση 1	40	N-S	1 cm	Κατακόρυφη	80	80	159
Επίλυση 20	Πτήση 2	40	E-W	1 cm	Κατακόρυφη	80	80	148
Επίλυση 21	Πτήση 1-2	40	N-S-E-W	1 cm	Κατακόρυφη	80	80	307
Επίλυση 22	Πτήση 7	50	N-S	1.3 cm	Κατακόρυφη	80	80	93
Επίλυση 23	Πτήση 8	50	E-W	1.3 cm	Κατακόρυφη	80	80	94
Επίλυση 24	Πτήση 7-8	50	N-S-E-W	1.3 cm	Κατακόρυφη	80	80	187
Επίλυση 25	Πτήση 9	60	N-S	1.5 cm	Κατακόρυφη	80	80	64
Επίλυση 26	Πτήση 10	60	E-W	1.5 cm	Κατακόρυφη	80	80	61
Επίλυση 27	Πτήση 9-10	60	N-S-E-W	1.5 cm	Κατακόρυφη	80	80	125

3° σετ επιλύσεων πτήσεων UAV Air Surveyor 4

Πίνακας 68

	Dr	one GPS A	ccuracy (1.0	0m)		Gi	ound Con	trol points	- Check pe	oints (0.050)m)	
	Ca	amera Loca	tion Error (cm)	Groun	d Control	Points Err	or (cm)	C	heck Point	ts Error (ci	n)
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error
Επίλυση 19	20.57610	17.55760	9.00161	28.50740	4.16647	4.68680	2.68363	6.82110	4.26511	3.46049	3.46049	6.52374
Επίλυση 20	12.27680	23.17880	16.57490	31.02750	3.10455	4.20048	2.80580	5.92915	2.08644	3.94410	2.46506	5.09761
Επίλυση 21	9.04875	7.69148	14.69580	18.89460	1.12437	1.38057	2.85727	3.36662	1.91044	1.50095	2.91781	3.79688
Επίλυση 22	36.42090	19.62110	9.54551	42.45690	4.86032	3.45198	2.87337	6.61779	4.12953	3.54771	4.23826	6.89943
Επίλυση 23	18.42830	33.94780	21.81230	44.36030	2.96500	4.46032	2.56641	5.93903	1.87603	4.13512	2.72047	5.29336
Επίλυση 24	9.99143	8.46782	14.57260	19.59320	1.02607	1.21462	2.24286	2.74928	1.82667	1.45304	2.48279	3.40768
Επίλυση 25	19.77270	31.24520	6.61088	36.97590	1.44025	3.47152	2.21240	4.36125	2.79768	2.51701	2.61301	4.58151
Επίλυση 26	8.44025	17.20550	15.09470	24.39500	4.52164	3.36378	0.95388	5.71577	2.97287	2.46150	3.17283	4.99638
Επίλυση 27	10.50570	7.73822	22.32310	25.85670	1.21446	1.94437	2.47049	3.37029	1.97867	1.62518	2.82217	3.81065

Αποτελέσματα 3^{ου} σετ επιλύσεων πτήσεων UAV Air Surveyor 4

Στα αποτελέσματα του τρίτου σετ, παρατηρείται ότι η συμμετοχή των 6 GCP (επιλύσεις διπλής διεύθυνσης) μειώνει οριζοντιογραφικά το RMS κυρίως κατά τον

άξονα Y σε σχέση με την επίλυση του αεροτριγωνισμού με GPS. Υψομετρικά το RMS κυμάνθηκε μεταξύ 3.40 cm - 3.81 cm (1/5 του RMS στον άξονα Z σε σχέση με την λύση με τα GPS). Επιπλέον, παρατηρείται ότι οι λύσεις δεν εμφανίζουν ιδιαίτερες αποκλίσεις σε σχέση με τα διαφορετικά ύψη των πτήσεων.

4ο Σετ επιλύσεων (επιλύσεις 28-36, πτήσεις 1, 2, 7, 8, 9, 10)

Στο τέταρτο σετ (28-36) έγινε επανάληψη των επιλύσεων του τρίτου σετ, με μεταβολή του συντελεστή βάρους στο GPS του UAV, που ορίστηκε σε **20.00 m**, και διατήρηση όλων των υπόλοιπων παραμέτρων όπως προηγουμένως.

Πίνακας 69

		VIIOS	ΠΡΟΣΑΝΑ-	Pixel		ЕПІКА	АЛҮѰН	F adaa
		YYUL	τολισμοσ	size	KAWLPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos
Επίλυση 28	Πτήση 1	40	N-S	1 cm	Κατακόρυφη	80	80	159
Επίλυση 29	Πτήση 2	40	E-W	1 cm	Κατακόρυφη	80	80	148
Επίλυση 30	Πτήση 1-2	40	N-S-E-W	1 cm	Κατακόρυφη	80	80	307
Επίλυση 31	Πτήση 7	50	N-S	1.3 cm	Κατακόρυφη	80	80	93
Επίλυση 32	Πτήση 8	50	E-W	1.3 cm	Κατακόρυφη	80	80	94
Επίλυση 33	Πτήση 7-8	50	N-S-E-W	1.3 cm	Κατακόρυφη	80	80	187
Επίλυση 34	Πτήση 9	60	N-S	1.5 cm	Κατακόρυφη	80	80	64
Επίλυση 35	Πτήση 10	60	E-W	1.5 cm	Κατακόρυφη	80	80	61
Επίλυση 36	Πτήση 9-10	60	N-S-E-W	1.5 cm	Κατακόρυφη	80	80	125

4° σετ επιλύσεων πτήσεων UAV Air Surveyor 4

	Dro	Drone GPS Accuracy (20.00m)				G	round Con	trol points -	Check po	ints (0.050)	m)	
	Ca	mera Locat	ion Error (c	m)	Groun	d Control	Points Err	or (cm)	С	heck Point	s Error (cr	n)
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error
Επίλυση 28	23.10140	19.68530	10.14990	32.00330	4.44158	4.18972	1.71466	6.34204	4.34036	2.95825	2.71905	5.91466
Επίλυση 29	13.86660	25.69600	18.97260	34.82140	3.42257	3.67711	1.92693	5.38035	2.22736	3.60135	2.49021	4.91243
Επίλυση 30	8.91920	7.76165	17.63010	21.22770	0.64214	1.25541	2.18834	2.60331	1.48803	1.33591	2.85226	3.48343
Επίλυση 31	40.33180	21.27860	11.63100	47.06070	4.70254	3.61374	1.52312	6.12314	3.69226	3.56237	3.44145	6.17793
Επίλυση 32	20.54650	37.53600	22.03220	48.13030	3.04686	3.94820	1.35814	5.16877	1.85164	3.82775	2.97378	5.18880
Επίλυση 33	9.86319	8.92375	16.89180	21.49990	0.67698	1.14859	1.90686	2.32673	1.50859	1.36967	2.52298	3.24303
Επίλυση 34	23.72220	37.77480	26.73190	52.00270	1.44321	3.84496	1.22162	4.28474	2.96057	2.71044	2.35679	4.65467
Επίλυση 35	10.77300	20.60320	51.63790	56.63060	3.54840	3.11721	0.26310	4.73047	2.57957	2.12745	3.84844	5.09811
Επίλυση 36	12.82360	8.54905	62.87920	64.74050	1.02601	1.89352	1.81992	2.81961	1.63352	1.46443	3.16056	3.84735

Αποτελέσματα 4^{ου} σετ επιλύσεων πτήσεων UAV Air Surveyor 4

Παρατηρεί κανείς ότι με τη μείωση του συντελεστή βάρους στο GPS του UAV μειώνεται το RMS οριζοντιογραφικά (τάξη μεγέθους 0.10 cm περίπου) και αυξάνεται κατά τον άξονα Z (τάξη μεγέθους 0.10 cm περίπου) δίνοντας καλύτερες λύσεις. Και σε αυτό το σετ διαπιστώνεται ότι οι λύσεις δεν εμφανίζουν ιδιαίτερες αποκλίσεις σε σχέση με τα διαφορετικά ύψη των πτήσεων.

5ο Σετ επιλύσεων (επιλύσεις 37-39, πτήσεις 1, 2, 3, 4, 5, 6)

Η επόμενη προσπάθεια ήταν η ενιαία επίλυση των πτήσεων 1-2-3-4-5-6 (37-39). Σε αυτό το σετ συμπεριλαμβάνονται, εκτός από τις πτήσεις με κατακόρυφη θέση της κάμερας, οι πτήσεις με τις πλάγιες εικόνες σε τέσσερις διευθύνσεις (κλίση 30°). Στην επίλυση 37 δεν συμμετέχουν φωτοσταθερά σημεία και έχει οριστεί αυξημένος συντελεστής βαρύτητας στο GPS του UAV **0.05 m**, ενώ και στις επιλύσεις 38 και 39 ο συντελεστής βαρύτητας των φωτοσταθερών ορίστηκε σε **0.05 m**.

	VIIOS	ΠΡΟΣΑΝΑ-	Pixel	VAMEDA	ЕПІКА	АЛҮѰН	Fatar	
	1402	τολισμοσ	size	KANLFA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS	
Πτήση 1-2-3-4-5-6	40	N-S-E-W	1 cm	Κατακόρυφη & Πλάγιες	80 60	80 40	566	

5° σετ επιλύσεων πτήσεων UAV Air Surveyor 4

Πίνακας 72

Αποτελέσματα 5^{ου} σετ επιλύσεων πτήσεων UAV Air Surveyor 4

	Dro	ne GPS Ac)5m)			Ground	Control po	oints - Cheo	ck points (().050m)				
	Camera Location Error (cm)					l Control	Points E	rror (cm)	Check Points Error (cm)					
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error		
Επίλυση 37	6.76754	6.46811	2.82075	9.77715	-	-	-	-	1.93658	3.51049	15.65750	16.16270		

Στην επίλυση 37 (επίλυση αεροτριγωνισμού μόνο από τα GPS, χωρίς συμμετοχή φωτοσταθερών), η προσθήκη πλάγιων εικόνων 4 διευθύνσεων (σε αναλογία 259 πλάγιες έναντι 307 κατακόρυφων) σε συνδυασμό με πτήσεις διπλής διεύθυνσης, δίνουν οριζοντιογραφικό RMS παρόμοιο με τις επιλύσεις των GCP. Υψομετρικά το RMS παραμένει σχετικά υψηλό (>15 cm). Τα αποτελέσματα της επίλυσης αυτής εμφανίζουν μικρότερα RMS συγκρινόμενα με την αντίστοιχη επίλυση χωρίς την συμμετοχή πλάγιων εικόνων.

Πίνακας 73

Αποτελέσματα 5^{ου} σετ επιλύσεων πτήσεων UAV Air Surveyor 4

	Dro	one GPS A	ccuracy (20.	00m)		Ground Control points - Check points (0.050m)									
	Ca	mera Loca	ation Error	(cm)	Groun	d Control	Points Err	or (cm)	Check Points Error (cm)						
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error			
Επίλυση 38	8.16795	7.41425	18.83150	21.82450	0.72756	1.61862	2.42065	3.00147	1.43305	1.43983	2.03143	3.00855			

Στην επίλυση 38, επίσης, εμφανίζονται οριακά μειωμένα RMS με συμμετοχή των πλάγιων εικόνων.

	Dro	one GPS A	ccuracy (20.	00m)		Ground Control points - Check points (0.050m)								
	Ca	mera Loca	tion Error ((cm)	Groun	d Control 1	Points Erro	or (cm)	Check Points Error (cm)					
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error		
Επίλυση 39	8.09933	7.17280	18.22550	21.19480	1.15584	1.43068	2.17487	2.84831	-	-	-	-		

Αποτελέσματα 5^{ου} σετ επιλύσεων πτήσεων UAV Air Surveyor 4

Στην τελευταία επίλυση αυτού του σετ (επίλυση 39) έγινε αεροτριγωνισμός με το σύνολο των φωτοσταθερών. Τα αποτελέσματα της επίλυσης αυτής (χωρίς check points), επί της ουσίας εκφράζουν την ακρίβεια της τοπογραφικής αποτύπωσης των φωτοσταθερών.

6ο Σετ επιλύσεων (επιλύσεις 40-43, πτήσεις 1, 2, 4)

Σε αυτό το σετ χρησιμοποιήθηκαν οι πτήσεις με κατακόρυφη θέση κάμερας (πτήσεις 1, 2), σε συνδυασμό με μία μόνο πτήση με πλάγια θέση της κάμερας. Επιπλέον, στις επιλύσεις 40, 41 και 42 διατηρήθηκαν οι παράμετροι του 5^{ου} σετ.

Πίνακας 75

6° σετ επιλύσεων πτήσεων UAV Air Surveyor 4

		VWOS	ΠΡΟΣΑΝΑ-	Pixel	LAMEDA	ЕПІКА	АЛҮѰН	Fotos	
		1402	τολισμοσ	size	KAWLFA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	rotos	
Πτή	ιση 1-2-4	40	N-S-E-W	1 cm	Κατακόρυφη & Πλάγιες	80 60	80 40	566	

Πίνακας 76

	Dro	ne GPS Ac	curacy (0.	05m)		(Fround C	ontrol po	ints - Chec	k points (0.	.050m)		
	Camera Location Error (cm)					nd Contr (c	ol Points m)	Error	Check Points Error (cm)				
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	X error Y error Z error			
Επίλυση 40	6.97475	5.80148	1.95115	9.27962	-	-	-	-	2.61893	4.43193	15.92820	16.73950	

Η επίλυση 40 έχει ίδια στοιχεία με την επίλυση 37 (χωρίς συμμετοχή GCP), με μόνη διαφορά ότι συμμετείχαν πλάγιες εικόνες μίας διεύθυνσης (αναλογία 59 πλάγιες έναντι 307 κατακόρυφων). Στην επίλυση αυτή προκύπτουν οριζοντιογραφικά RMS παρόμοια με τις επιλύσεις με συμμετοχή των φωτοσταθερών (GCP). Το RMS υψομετρικά πάλι παραμένει μεγαλύτερο από 15cm. Σε σχέση με την συμμετοχή πλάγιων εικόνων 4 διευθύνσεων παρατηρείται ότι τα RMS (X, Y, Z) είναι οριακά μεγαλύτερα (0.50 cm-1.00 cm).

Πίνακας 77

Αποτελέσματα 6^{ου} σετ επιλύσεων πτήσεων UAV Air Surveyor 4

	Dre	one GPS Ac	curacy (20.0	0m)		Ground Control points - Check points (0.050m)								
	Camera Location Error (cm)					nd Control	Points Erro	r (cm)	Check Points Error (cm)					
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error		
Επίλυση 41	8.55846	6.71764	19.44140	22.27880	0.72917	1.61794	2.42016	3.00110	1.43450	1.43983	2.21909	3.00920		

Στην επίλυση 41 (6 GCP), η συμμετοχή πλάγιων εικόνων μίας διεύθυνσης δεν επηρέασε την οριζοντιογραφική λύση (ίδια RMS με τα αποτελέσματα της επίλυσης 38). Αντίθετα, παρατηρήθηκε μικρή αύξηση στα υψομετρικά RMS (+0.20 cm).

Πίνακας 78

Αποτελέσματα 6^{ου} σετ επιλύσεων πτήσεων UAV Air Surveyor 4

	D	Drone GPS Accuracy (20.00m)				Ground Control points - Check points (0.050m)									
	(Camera Location Error (cm)				nd Control	Points Erro	Check Points Error (cm)							
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error			
Επίλυση 42	8.54912	6.47529	18.80780	21.65060	1.15594	1.43055	2.17472	2.84817	-	-	-	-			

Στην επίλυση αυτή (65 GCP), όπου προκύπτουν ακριβώς ίδια αποτελέσματα με την επίλυση 39 (πλάγιες εικόνες 4 διευθύνσεων), δεν έπαιξε ρόλο η μεταβολή βάρους των GPS ούτε και η συμμετοχή λιγότερων πλάγιων εικόνων, αφού η επίλυση στηρίχθηκε αποκλειστικά στην δέσμευση των GCP.

	Dre	one GPS Ac	curacy (20.0	0m)		Ground Control points - Check points (0.050m)								
	C	amera Loca	tion Error (c	:m)	Grour	nd Control I	Points Erro	r (cm)	Check Points Error (cm)					
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error		
Επίλυση 43	8.48794	6.17721	17.58980	20.48430	1.10266	1.35969	1.91083	2.59150	1.19040	1.17967	4.09186	4.42176		

Αποτελέσματα 6^{ου} σετ επιλύσεων πτήσεων UAV Air Surveyor 4

Τέλος, στην επίλυση 43 συμμετείχαν όλα τα GCP πλην των 3, 23, 34, 35, 37, 48, 59 και 41 που εμφάνιζαν μεγαλύτερο σφάλμα. Η επίλυση έγινε με βάρος των φωτοσταθερών **0.05 m** και βάρος των GPS του UAV σε **20.00 m.** Τα αποτελέσματα της επίλυσης αυτής έδωσαν οριζοντιογραφικά αποτελέσματα με σφάλμα RMS<2 cm, σε αντίθεση όμως με τα υψομετρικά σφάλματα που υπερδιπλασιάστηκαν.

3.1.2.UAV Phantom 4 pro V2

7ο Σετ επιλύσεων (επιλύσεις 44-47, πτήσεις 13, 14, 15)

Οι επιλύσεις 44-47 στηρίχτηκαν αποκλειστικά και μόνο στην ακρίβεια του GPS του UAV, η οποία ορίστηκε με βάρος **10.00 m.** Οι επιλύσεις 44 και 45 αφορούν πτήσεις μονής κατεύθυνσης αλλά διαφορετικού προσανατολισμού, η επίλυση 46 περιλαμβάνει πτήσεις διπλής διεύθυνσης (13 και 14) και, τέλος, η επίλυση 47 περιλαμβάνει όλες τις παραπάνω με επιπλέον την πτήση 15, που αποτελεί πτήση κυκλικής τροχιάς με την κάμερα σε κεκλιμένη θέση (πλάγιες εικόνες).
		VIIIOT	ΠΡΟΣΑΝΑ-	Pixel		ΕΠΙΚΑ	лүψн	Fatas
		1402	τολιΣΜοΣ	size	KAWEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS
Επίλυση 44	Πτήση 13	40	N-S	1.3 cm	Κατακόρυφη	80	80	326
Επίλυση 45	Πτήση 14	40	E-W	1.3 cm	Κατακόρυφη	80	80	267
Επίλυση 46	Πτήση 13-14	40	N-S-E-W	1.3 cm	Κατακόρυφη	80	80	593
Επίλυση 47	Πτήση 13-14-15	40	N-S-E-W	1.3 cm	Κατακόρυφη	80	80	665

7° σετ επιλύσεων πτήσεων UAV Phantom 4 pro V2

Πίνακας 81

Αποτελέσματα 7^{ου} σετ επιλύσεων πτήσεων UAV Phantom 4 pro V2

	Camera Accuracy (10.00m)				Ground Control points - Check points (0.050m)								
	Camera Location Error (m)				Gro	und Contr	ol Points	Error (m)		Check Poi	nts Error (m)		
	X error	Y error	Z error	Total	X	Y	Z	Total error	X error	Y error	Z error	Total	
Egilven 44				enor	enoi	enoi	enor					eno	
Emr.001 44	0.59669	0.39552	2.02613	2.14888	-	-	-	-	0.88525	0.04673	81.53570	81.54050	
Επίλυση 45	0.17387	0.17387	0.52834	0.64252	-	-	-	-	0.58207	0.48388	79.08150	79.08510	
Επίλυση 46	0.45763	0.42151	2.06990	2.16138	-	-	-	-	0.74650	0.24416	80.26560	80.26940	
Επίλυση 47	0.44274	0.43047	2.08473	2.17426	-	-	-	-	0.79369	0.29775	80.01930	80.02380	

Με βάση αυτά τα αποτελέσματα, προκύπτει ότι, στηριζόμενες σε λύσεις που εξαρτώνται αποκλειστικά και μόνο από την ακρίβεια θέσης του GPS του UAV (GPS πλοήγησης), οι ακρίβειες που προκύπτουν οριζοντιογραφικά είναι μεταξύ 25 cm – 88 cm. Οι επιλύσεις διπλής διεύθυνσης καθώς και ο συνδυασμός διπλής διεύθυνσης με πλάγιες εικόνες δεν πέτυχαν να μειώσουν τις τιμές RMS. Στην επίλυση αυτή το υψομετρικό RMS κυμαίνεται από 79 έως 81.50 m. Η μεγάλη αυτή απόκλιση πιθανότατα οφείλεται σε λανθασμένο μετασχηματισμό datum (από WGS '84 σε ΕΓΣΑ '87).

8ο Σετ επιλύσεων (επιλύσεις 48, 50, 52, 54, πτήσεις 13, 14, 15)

Στο 8° σετ επιλύσεων οι επιλύσεις του αεροτριγωνισμού έγιναν με βάση τα 6 GCP και περιλαμβάνονται επιλύσεις μονής διεύθυνσης (48, 50), επίλυση διπλής διεύθυνσης (52) καθώς και η επίλυση 54 με την συμμετοχή της πτήσης 15 (κυκλικής τροχιάς) με την κάμερα σε κεκλιμένη θέση. Σε κάθε μια από αυτές έγινε επίλυση του αεροτριγωνισμού με την συμμετοχή των 6 GCP (1-9-34-46-60-66).

Πίνακας 82

8° σετ επιλύσεων πτήσεων UAV Phantom 4 pro V2

			γψος ΠΡΟΣΑΝΑ- Pixel		Pixel size KAMEPA		ΕΠΙΚΑ	лүψн	Fotos
			1402	τολιέμος	Fixel size	KAIVIEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	FOLOS
Επίλυση 48	GCP 1-9-34-46-60-66	Πτήση 13	40	N-S	1.3 cm	Κατακόρυφη	80	80	326
Επίλυση 50	GCP 1-9-34-46-60-66	Πτήση 14	40	E-W	1.3 cm	Κατακόρυφη	80	80	267
Επίλυση 52	GCP 1-9-34-46-60-66	Πτήση 13-14	40	N-S-E-W	1.3 cm	Κατακόρυφη	80	80	593
Επίλυση 54	GCP 1-9-34-46-60-66	Πτήση 13-14-15	40	N-S-E-W	1.3 cm	Κατακόρυφη & Πλάγια	80	80	665

Πίνακας 83

	С	amera Acci	uracy (10.00	m)	Ground Control points - Check points (0.050m)								
	c	Camera Location Error (m)				und Control	Points Error	(cm)	Check Points Error (cm)				
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	
Επίλυση 48	0.81459	0.45878	81.10190	81.10730	5.63773	6.34794	11.24690	14.09160	4.16084	4.71912	12.27500	13.79340	
Επίλυση 50	0.43101	0.72717	78.94260	78.94720	4.32819	5.75977	8.83340	11.39900	3.34042	4.20472	11.21870	12.43770	
Επίλυση 52	0.68019	0.59220	79.95780	79.96290	10.30130	11.52570	19.84900	25.15830	8.16081	8.69195	21.38390	24.48310	
Επίλυση 54	0.67820	0.63581	80.02290	80.02830	0.69073	0.83766	0.64787	1.26432	1.40617	1.37287	2.86565	3.47477	

Αποτελέσματα 8^{ου} σετ επιλύσεων πτήσεων UAV Phantom 4 pro V2

Σε αυτό το σετ παρατηρείται ότι οι πτήσεις διπλής διεύθυνσης χωρίς τη χρήση πλάγιων εικόνων δεν είναι σε θέση να δώσουν ακριβή αποτελέσματα (σε αντίθεση με την επίλυση 61, Parrot Anafi). Με την συμμετοχή πλάγιων εικόνων (επίλυση 54 όπου συμπεριλαμβάνεται η πτήση κυκλικής τροχιάς), τα RMS μειώνονται κατά 90%. Αντίθετα, στις επιλύσεις όπου δεν συμμετείχαν πλάγιες εικόνες, οι επιλύσεις των πτήσεων μονής διεύθυνσης σε σχέση με την επίλυση διπλής διεύθυνσης είχαν μειωμένα RMS της τάξης του 50% οριζοντιογραφικά αλλά και υψομετρικά.

90 σετ επιλύσεων (επιλύσεις 48, 50, 52, 54, πτήσεις 13, 14, 15)

Στο 9° σετ επιλύσεων, οι αεροτριγωνισμοί πραγματοποιήθηκαν με βάση όλα τα GCP (65) και επιλύσεις μονής κατεύθυνσης (49, 51, 53, 55-51), διπλής κατεύθυνσης (52-53) καθώς και επιπλέον επιλύσεις με την συμμετοχή της πτήσης 15 (κυκλικής τροχιάς) με την κάμερα σε κεκλιμένη θέση.

Πίνακας 84

9° σετ επιλύσεων πτήσεων UAV Phantom 4 pro V2

			VIIIOE	ΠΡΟΣΑΝΑ-	Direct size	KANAEDA	ΕΠΙΚΑ	ΛΥΨΗ	Fatas
			YΨUΣ	τολιέμος	Pixel size	KAWEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	Fotos
Επίλυση 49	GCP Όλα (65)	Πτήση 13	40	N-S	1.3 cm	Κατακόρυφη	80	80	326
Επίλυση 51	GCP Όλα (65)	Πτήση 14	40	E-W	1.3 cm	Κατακόρυφη	80	80	267
Επίλυση 53	GCP Όλα (65)	Πτήση 13-14	40	N-S-E-W	1.3 cm	Κατακόρυφη	80	80	593
Επίλυση 55	GCP Όλα (65)	Πτήση 13-14-15	40	N-S-E-W	1.3 cm	Κατακόρυφη & Πλάγια	80	80	665

Πίνακας 85

Αποτελέσματα 9^{ου} σετ επιλύσεων πτήσεων UAV Phantom 4 pro V2

	С	amera Acci	uracy (10.00	m)	Ground Control points - Check points (0.050m)									
	c	amera Loca	ation Error (m)	Grou	Ind Control I	Points Error	(cm)		Check Poir	nts Error (cm)		
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error		
Επίλυση 49	0.80157	0.46080	81.26250	81.26780	1.22497	1.53218	2.47681	3.15955	-	-	-	-		
Επίλυση 51	0.42276	0.74380	79.08520	79.08990	1.24973	1.60700	2.95524	3.58855	-	-	-	-		
Επίλυση 53	0.65810	0.60028	80.24900	80.25400	1.51316	1.97690	2.78702	3.73702	-	-	-	-		
Επίλυση 55	0.67096	0.64125	80.03210	80.03750	1.06251	1.14432	0.96246	1.83432	-	-	-	-		

Η συμμετοχή όλων των GCP (χωρίς την ύπαρξη check points) δεν επιτρέπει τον έλεγχο των αποτελεσμάτων. Κι εδώ παρατηρείται ότι οι πτήσεις διπλής διεύθυνσης σε συνδυασμό με πλάγιες εικόνες δίνουν RMS μειωμένα κατά 30% οριζοντιογραφικά και κατά 40% υψομετρικά.

3.1.3.UAV Parrot Anafi

10ο Σετ επιλύσεων (επιλύσεις 56, 58, 60, πτήσεις 11, 12)

Στο 10° σετ επιλύσεων περιλαμβάνονται επιλύσεις μονής διεύθυνσης (56, 58) καθώς και διπλής διεύθυνσης (60). Σε αυτό το σετ όλες οι πτήσεις έγιναν με την κάμερα σε κατακόρυφη θέση. Σε κάθε μια από αυτές έγινε επίλυση του αεροτριγωνισμού αποκλειστικά και μόνο από τα GPS του UAV (βάρος 10.00 m).

Πίνακας 86

10° σετ επιλύσεων πτήσεων UAV Parrot Anafi

			VIIIOS	ΠΡΟΣΑΝΑ-	Pixel	VAMEDA	ЕШКА	АЛҮѰН	Estas
			YYUZ	τολισμοσ	size	KANIEPA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	rotos
Επίλυση 56	GPS UAV	Πτήση 11	40	N-S	1.2 cm	Κατακόρυφη	80	80	131
Επίλυση 58	GPS UAV	Πτήση 12	40	E-W	1.2 cm	Κατακόρυφη	80	80	159
Επίλυση 60	GPS UAV	Πτήση 11-12	40	N-S-E-W	1.2 cm	Κατακόρυφη	80	80	290

Πίνακας 87

Αποτελέσματα 10° σετ επιλύσεων πτήσεων UAV Parrot Anafi

	C	Camera Accuracy (10.00m)				Ground Control points - Check points (0.050m)								
	Camera Location Error (m)				Ground Control Points Error (m)				Check Points Error (m)					
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error		
Επίλυση 56	0.49529	0.96603	0.37218	1.14763	-	-	-	-	0.49040	0.83276	29.89660	29.91220		
Επίλυση 58	0.87912	0.38811	0.36046	1.02636	-	-	-	-	0.12501	0.20819	26.12540	26.12660		
Επίλυση 60	0.74514	0.75879	0.41085	1.14008	-	-	-	-	0.74514	0.75879	0.41085	1.14008		

Και σε αυτό το σετ επιβεβαιώνεται ότι τα αποτελέσματα που προκύπτουν από επιλύσεις αεροτριγωνισμού μόνο με χρήση των παρατηρήσεων από το GPS επιφέρουν μεγάλα σφάλματα. Το υψομετρικό RMS, και σε αυτό το σετ επιλύσεων, προέκυψε να είναι υπερβολικά μεγάλο, αποδιδόμενο και εδώ σε λανθασμένο μετασχηματισμό datum (από WGS '84 σε ΕΓΣΑ '87). Αξιοσημείωτο είναι ότι στην επίλυση 60, με τη συμμετοχή πτήσεων διπλής διεύθυνσης, το υψομετρικό RMS μειώθηκε σημαντικά αλλά παραμένει αρκετά υψηλό.

11ο Σετ επιλύσεων (επιλύσεις 57, 59, 61, πτήσεις 11, 12)

Σε αυτό το σετ περιλαμβάνονται οι επιλύσεις του 10^{ου} σετ με τη διαφορά ότι η επίλυση του αεροτριγωνισμού έγινε με την συμμετοχή των 6 GCP.

Πίνακας 88

11° σετ επιλύσεων πτήσεων UAV Parrot Anafi

			VIIION ΠΡΟΣΑΝΑ- Pixel		VAMEDA	ЕПІКА	АЛҮѰН	Fotos	
			1402	τολισμοσ	size	KAWLLFA	ΜΗΚΟΣ	ΠΛΑΤΟΣ	rotos
Επίλυση 57	GCP 1-9-34-46-60-66	Πτήση 11	40	N-S	1.2 cm	Κατακόρυφη	80	80	131
Επίλυση 59	GCP 1-9-34-46-60-66	Πτήση 12	40	E-W	1.2 cm	Κατακόρυφη	80	80	159
Επίλυση 61	GCP 1-9-34-46-60-66	Πτήση 11-12	40	N-S-E-W	1.2 cm	Κατακόρυφη	80	80	290

Πίνακας 89

Αποτελέσματα 11^{ου} σετ επιλύσεων πτήσεων UAV Parrot Anafi

	Camera Accuracy (10.00m)				Ground Control points - Check points (0.050m)							
	Camera Location Error (m)				Grou	nd Control	Points Err	or (m)	Check Points Error (m)			
	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error
Επίλυση 57	0.90546	1.44012	22.88020	22.94330	0.07207	0.05087	0.84741	0.12232	0.05372	0.05102	0.15129	0.16845
Επίλυση 59	0.99879	0.68806	22.50170	22.53440	0.05604	0.05264	0.07976	0.11079	0.05921	0.03487	0.16339	0.17725
Επίλυση 61	0.76367	0.95774	27.95930	27.98610	0.01829	0.03150	0.07184	0.08055	0.01941	0.02120	0.11156	0.11520

Και σε αυτήν την επίλυση επιβεβαιώνεται ότι οι πτήσεις διπλής διεύθυνσης, δίνουν συνολικά καλύτερα RMS. Παρ' όλο που τα RMS κατά X και Y είναι μικρά (2 cm), το RMS κατά Z παραμένει οριακά υψηλό (>10cm).

Στην επίλυση 61 όπου συμμετείχαν επιλύσεις διπλής διεύθυνσης, και σε αντίθεση με την πτήση 52 (πτήση Phantom, με επιπλέον πλάγιες εικόνες), τα αποτελέσματα ήταν εμφανώς καλύτερα (RMS στα X και Y <75% και στο Z <50%).

3.2. Σχολιασμός Αποτελεσμάτων Επιλύσεων

Με βάση τα αποτελέσματα των επιλύσεων που προηγήθηκαν, συμπεραίνει κανείς τα ακόλουθα:

UAV Air Surveyor 4

Επίλυση αεροτριγωνισμού από GPS UAV:

Πίνακας 90

Αποτελέσματα επίλυσης αεροτριγωνισμού (GPS UAV) διπλής διεύθυνσης,

					Cl	neck Poin	ts Error	(cm)	
No	Πτήση	ΥΨ. (m)	Pixel size (cm)	Κατεύθυνση	X error	Y error	Z error	Total error	Βάρη
12	1-2	40	1	N-S-E-W	1.930	5.942	13.305	14.699	
15	7-8	50	1.2	N-S-E-W	1.171	8.557	11.386	14.291	UAV GPS
18	9-10	60	1.5	N-S-E-W	1.533	1.663	70.416	70.416	(0.05 m)

κατακόρυφες εικόνες

Οι επιλύσεις που περιλαμβάνουν πτήσεις διπλής διεύθυνσης έδωσαν σχεδόν σε κάθε περίπτωση καλύτερες λύσεις σε σχέση με τις επιλύσεις όπου συμμετείχαν πτήσεις μονής διεύθυνσης, με μικρότερα RMS στις πτήσεις 50 m (pixel size 1.20 cm). Επίσης η αύξηση του βάρους στις παρατηρήσεις του GPS (τιμή 0.05 m), έδωσε τις μικρότερες τιμές στα RMS.

Στις επιλύσεις όπου συμμετείχαν κατακόρυφες και πλάγιες εικόνες, προέκυψαν οριακά καλύτερα αποτελέσματα στις επιλύσεις όπου συμμετείχαν πλάγιες εικόνες 4 κατευθύνσεων.

Αποτελέσματα επίλυσης αεροτριγωνισμού (GPS UAV) διπλής διεύθυνσης, κατακόρυφες εικόνες & πλάγιες εικόνες 4 διευθύνσεων

Check Points Error (cm)										
X error	Y error	Z error	Total error							
1.936 3.510 15.657 16.162										

Πίνακας 92

Αποτελέσματα επίλυσης αεροτριγωνισμού (GPS UAV) διπλής διεύθυνσης, κατακόρυφες εικόνες και πλάγιες εικόνες 1 διεύθυνσης

Check Points Error (cm)												
X error	Y error	Z error	Total error									
2.618	4.431	15.928	16.739									

Στις επιλύσεις των πτήσεων με το UAV Air Surveyor 4, τα αποτελέσματα της έρευνας έδειξαν ότι η επίλυση του αεροτριγωνισμού *μόνο* από τα GPS του UAV μπορεί να δώσει λύσεις με οριζοντιογραφική ακρίβεια ~ 2 cm – 4 cm και υψομετρική ακρίβεια ~ 11 cm – 16 cm.

UAV Air Surveyor 4

Επίλυση αεροτριγωνισμού από GCP ή/και GPS UAV :

Πίνακας 93

Αποτελέσματα επίλυσης αεροτριγωνισμού (6 GCP) διπλής διεύθυνσης,

κατακόρυφες εικόνες

Νο Πτήση		N/DT(D' 1 '		Cheo	ek Point	s Error (o	cm)		Check Points Error (cm)					
No	Πτήση	ΥΨ. (m)	(cm)	Κατεύθυνση	X error	Y error	Z error	Total error	No	X er- ror	Y er- ror	Z er- ror	Total error		
21	1-2	40	1	N-S-E-W	1.910	1.501	2.918	3.797	30	1.488	1.336	2.852	3.483		
24	7-8	50	1.2	N-S-E-W	1.827	1.453	2.483	3.408	33	1.509	1.370	2.523	3.243		
27	9-10	60	1.5	N-S-E-W	1.979	1.625	2.822	3.811	36	1.634	1.464	3.161	3.847		
					U		UA	V GPS	(20.00) m)					

Και πάλι, οι επιλύσεις που περιέχουν πτήσεις διπλής διεύθυνσης έδωσαν σχεδόν σε κάθε περίπτωση λύσεις καλύτερης ακρίβειας σε σχέση με τις επιλύσεις όπου συμμετείχαν πτήσεις μονής διεύθυνσης, με μικρότερα RMS στις πτήσεις από 50 m (pixel size 1.20 cm).

Στις επιλύσεις όπου συμμετείχαν κατακόρυφες και πλάγιες εικόνες, προέκυψαν οριακά καλύτερα αποτελέσματα στις επιλύσεις όπου συμμετείχαν πλάγιες εικόνες 4 κατευθύνσεων.

Αποτελέσματα επίλυσης αεροτριγωνισμού 6 (GCP) διπλής διεύθυνσης, κατακόρυφες εικόνες & πλάγιες εικόνες 4 διευθύνσεων

Check Points Error (cm)												
X	Y	Ζ	Total									
error	error	error	error									
1.433	1.439	2.031	3.001									

Πίνακας 95

Αποτελέσματα επίλυσης αεροτριγωνισμού (6 GCP) διπλής διεύθυνσης, κατακόρυφες εικόνες & πλάγιες εικόνες 1 διεύθυνσης

Check Points Error (cm)												
X error	Y error	Z error	Total error									
1.435	1.439	2.221	3.001									

Στις επιλύσεις των πτήσεων με το UAV Air Surveyor 4, τα αποτελέσματα της έρευνας έδειξαν ότι η επίλυση του αεροτριγωνισμού συνδυαστικά από τα GPS του UAV και από τα GCP μπορεί να δώσει λύσεις με οριζοντιογραφική ακρίβεια ~ 1.3 cm - 1.5cm και υψομετρική ακρίβεια ~ 2.0cm - 3.2 cm.

Αθροιστικά αποτελέσματα επιλύσεων πτήσεων Air Surveyor 4 με επίλυση αεροτριγωνισμού από GPS UAV

N	п	N/H	TA T	ΘΕΣ	ЕПІК Ф	АЛҮ- Н	Cam	era Loca	tion Erro	or (cm)	Cl	neck Point	ts Error (ci	m)	Βάρη
IN	Πτ.	ΥΨ	KAI.	н САМ	MH K.	ΠΛ.	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	
1	1	40	N-S	Κατ.	80	80	8.213	5.351	1.255	9.883	21.977	19.670	10.044	31.157	
2	2	40	E-W	Κατ.	80	80	6.117	9.124	1.164	11.046	9.124	1.164	10.985	11.046	
3	1-2	40	N-S-E-W	Κατ.	80	80	8.630	6.783	1.043	11.026	2.094	6.305	19.081	20.204	UAN CDG
4	7	50	N-S	Κατ.	80	80	9.067	6.112	1.507	11.039	34.966	22.984	8.514	42.701	UAV GPS
5	8	50	E-W	Κατ.	80	80	6.954	9.486	1.396	11.845	18.291	34.394	23.900	45.702	(1.00m), CP
6	7-8	50	N-S-E-W	Κατ.	80	80	9.721	9.453	3.578	14.023	1.828	2.985	14.187	14.612	(0.05m)
7	9	60	N-S	Κατ.	80	80	7.168	1.860	9.658	9.836	27.417	36.516	25.031	52.074	(0.0511)
8	10	60	E-W	Κατ.	80	80	7.255	4.662	1.512	8.755	9.184	24.545	13.255	29.368	
9	9-10	60	N-S-E-W	Κατ.	80	80	10.50	8.474	5.443	14.552	1.944	3.376	60.952	61.076	
10	1	40	N-S	Κατ.	80	80	7.481	4.692	1.211	8.913	22.027	20.368	17.385	34.674	
11	2	40	E-W	Κατ.	80	80	5.170	7.846	1.189	9.471	13.167	25.230	9.850	30.116	
12	1-2	40	N-S-E-W	Κατ.	80	80	8.279	6.518	0.963	10.581	1.930	5.942	13.305	14.699	
13	7	50	N-S	Κατ.	80	80	7.612	5.012	1.253	9.200	32.844	24.027	11.008	42.157	UAV GPS
14	8	50	E-W	Κατ.	80	80	5.808	7.793	1.404	9.820	19.203	34.479	7.401	40.154	(0.05m), CD
15	7-8	50	N-S-E-W	Κατ.	80	80	8.975	6.713	1.260	11.278	1.171	8.557	11.386	14.291	(0.05m)
16	9	60	N-S	Κατ.	80	80	2.745	2.419	1.957	4.149	0.342	0.330	1.076	1.177	(0.05111)
17	10	60	E-W	Κατ.	80	80	3.690	2.744	1.671	4.893	5.813	27.156	74.520	79.527	
18	9-10	60	N-S-E-W	Κατ.	80	80	3.517	3.461	4.226	6.496	1.533	1.663	70.416	70.416	
37	1-2- 3-4- 5-6	40	N-S-E-W	Κατ., Πλ.	80/60	80/40	6.768	6.468	2.821	9.777	1.937	3.510	15.658	16.163	UAV GPS (0.05m), CP (0.05m)
40	1-2-4	40	N-S-E-W	Κτ., Πλ.	80/60	80/40	6.975	5.801	1.951	9.280	2.619	4.432	15.928	16.740	UAV GPS (0.05m), CP (0.05m)

- 74 **-**

					ЕПІКА	ЛҮѰН		Cam	era Locat	ion Error	(cm)		GCP Er	ror (cm)		Che	ck Points			
Ν	Пτ.	ΥΨ.	KAT.	ΘΕΣΗ			GCP	X	Y	Z	Total	X	Y	Z	Total	X	Y	Ζ	Total	Βάρη
				CAM	МНК.	IIA.		error	error	error	error	error	error	error	error	error	error	error	error	
19	1	40	N-S	Κατ.	80	80	GCP 1-9-34-46-60-66	20.576	17.558	9.002	28.507	4.166	4.687	2.684	6.821	4.265	3.460	3.460	6.524	
20	2	40	F-W	Κατ	80	80	GCP 1-9-34-46-60-66	12 277	23 179	16 575	31.028	3 105	4 200	2 806	5 929	2 086	3 944	2 465	5 098	
21	1-2	40	N-S-E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	9.049	7.691	14.696	18.895	1.124	1.381	2.857	3.367	1.910	1.501	2.918	3.797	
22	7	50	N-S	Κατ.	80	80	GCP 1-9-34-46-60-66	36.421	19.621	9.546	42.457	4.860	3.452	2.873	6.618	4.130	3.548	4.238	6.899	UAV GPS
23	8	50	E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	18.428	33.948	21.812	44.360	2.965	4.460	2.566	5.939	1.876	4.135	2.720	5.293	(1.00m), GCP -
24	7-8	50	N-S-E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	9.991	8.468	14.573	19.593	1.026	1.215	2.243	2.749	1.827	1.453	2.483	3.408	CP (0.05m)
25	9	60	N-S	Κατ.	80	80	GCP 1-9-34-46-60-66	31.245	6.611	36.976	37.562	1.440	3.472	2.212	4.361	2.798	2.517	2.613	4.582	~ /
26	10	60	E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	8.440	17.206	15.095	24.395	4.522	3.364	0.954	5.716	2.973	2.462	3.173	4.996	
27	9-10	60	N-S-E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	10.506	7.738	22.323	25.857	1.214	1.944	2.470	3.370	1.979	1.625	2.822	3.811	
28	1	40	N-S	Κατ.	80	80	GCP 1-9-34-46-60-66	23.101	19.685	10.150	32.003	4.442	4.190	1.715	6.342	4.340	2.958	2.719	5.915	
29	2	40	E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	13.867	25.696	18.973	34.821	3.423	3.677	1.927	5.380	2.227	3.601	2.490	4.912	UAV CDC
30	1-2	40	N-S-E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	8.919	7.762	17.630	21.228	0.642	1.255	2.188	2.603	1.488	1.336	2.852	3.483	(20.00m) CCP
31	7	50	N-S	Κατ.	80	80	GCP 1-9-34-46-60-66	40.332	21.279	11.631	47.061	4.703	3.614	1.523	6.123	3.692	3.562	3.441	6.178	(20.0011), 0CF
32	8	50	E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	20.547	37.536	22.032	48.130	3.047	3.948	1.358	5.169	1.852	3.828	2.974	5.189	- CI (0.0511)
33	7-8	50	N-S-E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	9.863	8.924	16.892	21.500	0.677	1.149	1.907	2.327	1.509	1.370	2.523	3.243	UAV GPS
34	9	60	N-S	Κατ.	80	80	GCP 1-9-34-46-60-66	23.722	37.775	26.732	52.003	1.443	3.845	1.222	4.285	2.961	2.710	2.357	4.655	(20.00m), GCP
35	10	60	E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	10.773	20.603	51.638	56.631	3.548	3.117	0.263	4.730	2.580	2.127	3.848	5.098	- CP (0.05m)
36	9-10	60	N-S-E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	12.824	8.549	62.879	64.741	1.026	1.894	1.820	2.820	1.634	1.464	3.161	3.847	
38	1-2-3- 4-5-6	40	N-S-E-W	Κατ.,Πλ.	80/60	80/40	GCP 1-9-34-46-60-66	8.168	7.414	18.832	21.825	0.728	1.619	2.421	3.001	1.433	1.440	2.031	3.009	UAV GPS
39	1-2-3- 4-5-6	40	N-S-E-W	Κατ.,Πλ.	80/60	80/40	GCP Όλα (65)	8.099	7.173	18.226	21.195	1.156	1.431	2.175	2.848	-	-	-	-	(20.00m), GCP - CP (0.05m)
41	1-2-4	40	N-S-E-W	Κατ.,Πλ.	80/60	80/40	GCP 1-9-34-46-60-66	8.558	6.718	19.441	22.279	0.729	1.618	2.420	3.001	1.435	1.440	2.219	3.009	UAV GPS
42	1-2-4	40	N-S-E-W	Κατ.,Πλ.	80/60	80/40	GCP Όλα (65)	8.549	6.475	18.808	21.651	1.156	1.431	2.175	2.848	-	-	-	-	(20.00m), GCP
43	1-2-4	40	N-S-E-W	Κατ.,Πλ.	80/60	80/40	GCP όλα πλην 3, 23, 34, 35, 37, 48, 59, 41	8.488	6.177	17.590	20.484	1.103	1.360	1.911	2.592	1.190	1.180	4.092	4.422	- CP (0.05m)

Αθροιστικά αποτελέσματα επιλύσεων πτήσεων Air Surveyor 4 με επίλυση αεροτριγωνισμού από GCP

UAV Phantom 4 proV2 & UAV Parrot Anafi

Επίλυση αεροτριγωνισμού από GPS UAV:

Στις επιλύσεις των πτήσεων με τα UAV Phantom 4 proV2 και Parrot Anafi (pixel size 1.3 cm – 1.2 cm, αντίστοιχα), τα GPS (πλοήγησης) δεν είναι σε θέση να δώσουν ακριβή αποτελέσματα. Οι επιλύσεις διπλής διεύθυνσης δίνουν οριζοντιογραφικό σφάλμα RMS ~ 70 cm και υψομετρικό σφάλμα αρκετών μέτρων (πρόβλημα μετασχηματισμού datum).

Εξαίρεση αποτέλεσε η επίλυση 60 (Parrot Anafi), όπου στην περίπτωση διπλής διεύθυνσης παρατηρήθηκε αύξηση του οριζοντιογραφικού RMS. Αξιοσημείωτο είναι ότι με το διπλό strip το RMS κατά τον άξονα Ζ έπεσε στα 41.085cm.

Πίνακας 98

Αποτελέσματα επίλυσης αεροτριγωνισμού (GPS UAV) διπλής διεύθυνσης, κατακόρυφες εικόνες

Check Points Error (cm)											
X error	Y error	Z error	Total er- ror								
74.514	75.879	41.085	114.008								

Επίλυση αεροτριγωνισμού από GCP :

Από τις επιλύσεις του αεροτριγωνισμού με την συμμετοχή 6 GCP, σε πτήσεις διπλής διεύθυνσης και μόνο με κατακόρυφες εικόνες, παρατηρήθηκε ότι το UAV Parrot Anafi έδωσε καλύτερα αποτελέσματα συνολικά (75% μικρότερα RMS οριζοντιογραφικά, 50% μικρότερο RMS υψομετρικά), όπως φαίνεται στους δύο επόμενους πίνακες.

Αποτελέσματα επίλυσης αεροτριγωνισμού 6 (GCP) διπλής διεύθυνσης, κατακόρυφες εικόνες, Phantom Pro V2 (pixel size 1.3 cm)

Check Points Error (cm)												
X error	Y error	Z error	Total error									
8.160	8.691	21.383	24.483									

Πίνακας 100

Αποτελέσματα επίλυσης αεροτριγωνισμού 6 (GCP) διπλής διεύθυνσης, κατακόρυφες εικόνες, Parrot Anafi (pixel size 1.2 cm)

Check Points Error (cm)												
X error	Y error	Z error	Total error									
1.941	2.120	11.156	11.520									

Όσον αφορά το Phantom 4 pro V2, τα RMS μειώνονται, αντίστοιχα, ακόμα περισσότερο με τη συμμετοχή πλάγιων εικόνων σε συνδυασμό με πτήσεις διπλής διεύθυνσης.

Πίνακας 101

Αποτελέσματα επίλυσης αεροτριγωνισμού 6 (GCP) διπλής διεύθυνσης, κατακόρυφες και πλάγιες εικόνες, Phantom Pro V2 (pixel size 1.3 cm)

Check Points Error (m)												
X error	Y error	Z error	Total error									
1.406	1.373	2.866	3.475									

N	Ν П.		U AT	ΘΕΣΗ	ЕПІКА	ЛҮѰН	Cam	era Loca	tion Erro	r (cm)		GCP Er	ror (cm)			Check Poi	ints Error (em)	ΣΥΝΤΕΛΕΣΤΕΣ ΒΑΡΩΝ
1	11.	(m)	KAI.	CAM	МНК.	ΠΛ.	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	X error	Y error	Z error	Total error	
44	13	40	N-S	Κατ.	80	80	0.597	0.396	2.026	2.149	-	-	-	-	88.525	4.673	8153.570	8154.050	
45	14	40	E-W	Κατ.	80	80	0.174	0.174	0.528	0.643	-	-	-	-	58.207	48.388	7908.150	7908.510	UAV GPS
46	13-14	40	N-S-E- W	Κατ.	80	80	0.458	0.422	2.070	2.161	-	-	-	-	74.650	24.416	8026.560	8026.940	(10.00m), GCP - CP (0.05m)
47	13-14- 15	40	N-S-E- W	Κατ.	80	80	0.443	0.430	2.085	2.174	-	-	-	-	79.369	29.775	8001.930	8002.380	()

Αθροιστικά αποτελέσματα επιλύσεων πτήσεων Phantom 4 pro V2 με προσδιορισμό εζωτερικού προσανατολισμού από GPS UAV

							-													
N	П.	ΥΨ.	КАТ.	ΘΕΣ Η	ЕПІКА	ЛҮѰН	GCP	Came	era Loca	tion Erro	r (cm)		GCP Er	ror (cm)		(Check Poi	ints Error (c	m)	ΣΥΝΤΕ- ΛΕΣΤΕΣ ΒΑΡΩΝ
				CAM	мнк	ПА		X	Y	Z	Total	Х	Y	Z	Total	Х	Y	7 orror	Total	
					WIIIK.	11/\.		error	error	error	error	error	error	error	error	error	error	2 61101	error	
48	13	40	N-S	Κατ.	80	80	GCP 1-9-34- 46-60-66	0.815	0.459	81.102	81.107	5.638	6.348	11.247	14.092	4.161	4.719	12.275	13.793	
49	13	40	N-S	Κατ.	80	80	GCP Όλα (65)	0.802	0.461	81.263	81.268	1.225	1.532	2.477	3.160	-	-	-	-	
50	14	40	E-W	Κατ.	80	80	GCP 1-9-34- 46-60-66	0.431	0.727	78.943	78.947	4.328	5.760	8.833	11.399	3.340	4.205	11.219	12.438	
51	14	40	E-W	Κατ.	80	80	GCP Όλα (65)	0.423	0.744	79.085	79.090	1.250	1.607	2.955	3.589	-	-	-	-	UAV GPS
52	13-14	40	N-S-E-W	Κατ.	80	80	GCP 1-9-34- 46-60-66	0.680	0.592	79.958	79.963	10.301	11.526	19.849	25.158	8.161	8.692	21.384	24.483	(10.00m), GCP - CP (0.05m)
53	13-14	40	N-S-E-W	Κατ.	80	80	GCP Όλα (65)	0.658	0.600	80.249	80.254	1.513	1.977	2.787	3.737	-	-	-	-	(0.05111)
54	13-14- 15	40	N-S-E-W	Κατ., Πλ.	80	80	GCP 1-9-34- 46-60-66	0.678	0.636	80.023	80.028	0.691	0.838	0.648	1.264	1.406	1.373	2.866	3.475	
55	13-14- 15	40	N-S-E-W	Κατ., Πλ.	80	80	GCP Όλα (65)	0.671	0.641	80.032	80.038	1.063	1.144	0.962	1.834	-	-	-	-	

Αθροιστικά αποτελέσματα επιλύσεων πτήσεων Phantom 4 pro V2 με προσδιορισμό εζωτερικού προσανατολισμού από φωτοσταθερά

		ΥΨ.	YΨ.	YΨ.	YΨ.	YΨ.	YΨ.	YΨ.	YΨ.	YΨ.	YΨ.	ΥΨ.	Y¥.	YΨ.	ΥΨ.					XZ A T	XZ A (D)	XZ A T			ΘΕΣΗ	ЕПІКА	ЛҮѰН	Cam	era Locat	ion Error	(cm)		GCP Er	ror (cm)			Check Poi	ints Error (c	m)	ΣΥΝΤΕΛΕΣΤΕΣ ΒΑΡΩΝ
No	Πτησ.	(m)	КАТ.	CAM	MHK	ПА	Х	Y	Z	Total	Х	Y	Z	Total	X	Y	Zonnon	Total																						
									WIIIK.	11/1.	error	error	error	ror error	error err	error	error error		error error		error																			
56	11	40	N-S	Κατ.	80	80	0.495	0.966	0.372	1.148	-	-	-	-	49.040	83.276	2989.660	2991.220	UAV GPS																					
58	12	40	E-W	Κατ.	80	80	0.879	0.388	0.360	1.026	-	-	-	-	12.501	20.819	2612.540	2612.660	(10.00m), GCP -																					
60	11-12	40	N-S-E-W	Κατ.	80	80	0.745	0.759	0.411	1.140	-	-	-	-	74.514	75.879	41.085	114.008	CP (0.05m)																					

Αθροιστικά αποτελέσματα επιλύσεων πτήσεων Parrot Anafi με προσδιορισμό εξωτερικού προσανατολισμού από GPS UAV

Πίνακας 105

Αθροιστικά αποτελέσματα επιλύσεων πτήσεων Parrot Anafi με προσδιορισμό εζωτερικού προσανατολισμού από φωτοσταθερά

		ΥΨ.	YΨ.	YΨ.	ΥΨ.	YΨ.	ΥΨ.				ΘΕΣΗ	ЕПІКАЛУΨН		COR	Camera Location Error (cm)			GCP Error (cm)				Check Points Error (cm)				ΣΥΝΤΕΛΕΣΤΕΣ ΒΑΡΩΝ
No	Πτησ.	(m)	KAT.	CAM	MHK	ПА	GCP	X	Y	Z	Total	Х	Y	Z	Total	Х	Y	7 orror	Total							
					IVIIIX.	11/1.		error	error	error	error	error	error	error	error	error	error	Z error	error							
57	11	40	N-S	Κατ.	80	80	GCP 1-9-34-46-60-66	0.905	1.440	22.880	22.943	7.207	5.087	8.4741	12.232	5.372	5.102	15.129	16.845	UAV GPS						
59	12	40	E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	0.999	0.688	22.502	22.534	5.604	5.264	7.976	11.079	5.921	3.487	16.339	17.725	(10.00m), GCP -						
61	11-12	40	N-S-E-W	Κατ.	80	80	GCP 1-9-34-46-60-66	0.764	0.958	27.959	27.986	1.829	3.150	7.184	8.055	1.941	2.120	11.156	11.520	CP (0.05m)						

ΚΕΦΑΛΑΙΟ 4

4.1. Συμπεράσματα

Είναι γνωστό ότι η συμμετοχή ενός ικανοποιητικού αριθμού φωτοσταθερών σημείων (GCP) κατά τον αεροτριγωνισμό ενός μπλοκ επικαλυπτόμενων εικόνων μπορεί να προσδιορίσει τον εξωτερικό τους προσανατολισμό με μεγάλη ακρίβεια, εξασφαλίζοντας έτσι μια αξιόπιστη τρισδιάστατη ανακατασκευή του 3D χώρου. Παρ' όλα αυτά, η τοπογραφική μέτρηση των φωτοσταθερών σημείων στο έδαφος αποτελεί μια δαπανηρή, χρονοβόρα καθώς επίσης και πολλές φορές πρακτικά ανέφικτη διαδικασία (έλλειψη πρόσβασης στην περιοχή, επείγουσα ανάγκη αποτύπωσης). Στην παρούσα διπλωματική εργασία διερευνήθηκε η επιτευχθείσα ακρίβεια του αεροτριγωνισμού σε μπλοκ εικόνων που λαμβάνονται από UAV όταν χρησιμοποιούνται ως παρατηρήσεις οι μετρήσεις των θέσεων του UAV από δέκτη GPS μονής και διπλής συχνότητας.

Για τις ανάγκες της έρευνας χρησιμοποιήθηκαν τρία διαφορετικά UAV. Σχεδιάστηκαν και υλοποιήθηκαν 15 σχέδια πτήσης, εκ των οποίων 10 πτήσεις υλοποιήθηκαν με το Air Surveyor 4, 3 με το Phantom 4 pro V2 και 2 με το Parrot Anafi. Συνολικά από τις 15 πτήσεις προέκυψαν 61 διαφορετικές επιλύσεις, οι οποίες κατηγοριοποιήθηκαν ανάλογα με τις εξής παραμέτρους:

- Τύπος UAV

- Πτήσεις μονής / διπλής διεύθυνσης.

- Θέση κάμερας (κατακόρυφες εικόνες, πλάγιες εικόνες 30°)

- Επίλυση αεροτριγωνισμού με τη χρήση φωτοσταθερών σημείων

- Επίλυση αεροτριγωνισμού με τις θέσεις λήψης των εικόνων.

Από τα αποτελέσματα της έρευνας, διαπιστώνεται ότι η επίλυση του αεροτριγωνισμού χωρίς την συμμετοχή φωτοσταθερών σημείων αλλά με γνωστές τις θέσεις λήψης των εικόνων από διπλόσυχνο GPS (χρήση του UAV Air Surveyor 4) μπορεί να δώσει αποτελέσματα με υψηλή οριζοντιογραφική ακρίβεια (2 cm – 4 cm) παρόμοια με εκείνη των επιλύσεων του αεροτριγωνισμού μέσω φωτοσταθερών. Όσον αφορά την υψομετρία, τα σφάλματα προκύπτουν μεγαλύτερα (11 cm – 16 cm), εντούτοις αρκετά ικανοποιητικά για πολλές εφαρμογές.

Στις επιλύσεις των μπλοκ των UAV Phantom 4 proV2 και Parrot Anafi, οι παρατηρήσεις των θέσεων λήψης από τα δύο μονόσυχνα GPS δεν ήταν σε θέση να δώσουν ακριβή αποτελέσματα ακόμα και στις επιλύσεις όπου συμμετείχαν οι πτήσεις διπλής διεύθυνσης με κατακόρυφες ή/και πλάγιες φωτογραφίες. Παράλληλα, επιβεβαιώνονται οι διαπιστώσεις της φωτογραμμετρικής βιβλιογραφίας κατά τις οποίες η χρήση λωρίδων σε εγκάρσιες διευθύνσεις βελτιώνει την οριζοντιογραφική ακρίβεια έναντι των λωρίδων απλής διεύθυνσης. Ιδιαιτέρως μάλιστα όταν αυτές χρησιμοποιούνται σε συνδυασμό με πλάγιες λήψεις οπότε βελτιώνεται και η υψομετρική ακρίβεια.

4.2. Προτάσεις

Η παρούσα εργασία έχει εστιάσει στην αξιολόγηση των αποτελεσμάτων του αεροτριγωνισμού με χρήση παρατηρήσεων από δέκτες (μονόσυχνους και διπλόσυχνους) GPS, με και χωρίς χρήση φωτοσταθερών σημείων, χωρίς όμως να δοθεί ιδιαίτερη βαρύτητα στο πλήθος και την κατανομή των σημείων αυτών στο χώρο. Η μελέτη αυτή έχει μεγάλο πρακτικό (εκτός από επιστημονικό) ενδιαφέρον για τις πάσης φύσεως φωτογραμμετρικές αποτυπώσεις που υλοποιούνται μέσω UAV και έχουν υψηλές απαιτήσεις σε οριζοντιογραφική και υψομετρική ακρίβεια.

Επίσης, κατά την μελλοντική συνέχιση της έρευνας εμφανίζεται σημαντική η μελέτη της επίδρασης των μετρήσεων πραγματικού χρόνου από αδρανειακό σύστημα IMU σε συνδυασμό με τις μετρήσεις από δέκτη GPS στο UAV. Αξίζει επίσης να διερευνηθεί περαιτέρω το κατά πόσον είναι εφικτή – και αν ναι, υπό ποιες προϋποθέσεις – η απευθείας χρήση των μετρήσεων του συστήματος GPS/IMU για τον εξωτερικό προσανατολισμό των εικόνων, χωρίς την μεσολάβηση του αεροτριγωνισμού.

Τέλος, προτείνεται να αξιολογηθεί η χρήση πανοραμικών/σφαιρικών εικόνων σε συνδυασμό με μετρήσεις από GPS, για να διαπιστωθεί αν η κατανομή σημείων σε όλες τις διευθύνσεις του χώρου μπορεί να συμβάλλει στην αύξηση της ακρίβειας επίλυσης των προσανατολισμών, και ειδικά της εκτίμησης των στροφών, όπως καταλήγει στην έρευνά της η Κυπαρίσση (2018).

Βιβλιογραφία

Ackermann, F. (1996). Experimental tests on fast ambiguity solutions for airborne kinematic GPS positioning. In *ISPRS International Symposium*, 31, 51-56.

Anurogo, W., Lubis, M. Z., Khoirunnisa, H., Hanafi, D. S. P. A., Rizki, F., Surya, G., Situmorang, A. D. L., Timbang, D., Sihombing, P. N., Lukitasari, C. A., & Dewanti, N. A. (2017). A simple aerial photogrammetric mapping system overview and image acquisition using unmanned aerial vehicles (UAVs). *Journal of Applied Geospatial Information*, *1*(1), 11-18.

Carbonneau, P. E. & Dietrich, J. T. (2016). Cost-effective non-metric photogrammetry from consumer-grade sUAS: implications for direct georeferencing of structure from motion photogrammetry. *Earth Surface Process and Landforms*,42(3), 473-486. doi: 10.1002/esp.4012

- Γεωργόπουλος, Α. (χχ). Φωτογραμμετρία ΙΙ. Αεροτριγωνισμός & Ακρίβειες. Ανοιχτά Ακαδημαϊκά Μαθήματα από τη Μονάδα Υλοποίησης του ΕΜΠ. Ανακτήθηκε από <u>https://docplayer.gr/47969758-Fotogrammetria-ii-aerotrigonismos-</u> akriveies-andreas-georgopoylos-kathigitis-e-m-p.html.
- Colomina, I. & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. *ISPRS Journal of Photogrammetry and Remote Sensing*,92, 79-97. doi:10.1016/j.isprsjprs.2014.02.013

Δουκαρή, Μ. (2015). Διερεύνηση Μεθόδων Απεικόνισης Τρισδιάστατης Γεωχωρικής Πληροφορίας, Μικρής Κλίμακας, με Αζιοποίηση Μεθόδων UAV και Τεχνολογιών Υπολογιστικής Όρασης. Μεταπτυχιακή εργασία, Πανεπιστήμιο Αιγαίου.

Eisenbeiß, H. (2009). UAV Photogrammetry. Διδακτορική Διατριβή. ETH Zurich.

Engineers, U. A. C. O. (2002). Engineering and Design: Photogrammetric Mapping. Engineer Manual, 1110, 2-1100. Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. & Carbonneau, P. E (2013). Topographic structure from motion: a new development in photogrammetric measurement. *Earth Surface Processes and Landforms*, 38, 421–430. doi: 10.1002/esp.3366

Gabrlik, P. (2015). The use of direct georeferencing in aerial photogrammetry with Micro UAV. *IFAC-PapersOnLine*, 48(4), doi: 380-385.
10.1016/j.ifacol.2015.07.064

Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O' Connor, J. & Rosette, J. (2019). Structure from Motion Photogrammetry in forestry: a review. *Current Forestry Reports*, *5*, 155-168. doi.org/10.1007/s40725-019-00094-3

James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. *Journal of Geophysical Research: Earth Surface, 117*(F03017), 1-17. doi: 10.1029/2011JF002289

- James, M. R. & Robson, S. (2014). Mitigating systematic error in topographic models derived from UAV and ground-based image networks. *Earth Surface Processes and Landforms*, 39, 1413–1420. doi: 10.1002/esp.3609
- Jaud, M., Bertin, S., Beauverger, M., Augereau, E. & Delacourt, C. (2020). RTK GNSS-assisted terrestrial SfM photogrammetry without GCP: Application to coastal morphodynamics monitoring. *Remote Sensing*, *12*(11), 1889, 1-15. doi:10.3390/rs12111889

Καρράς, Γ. Η. (1992). Η Τοπογραφία Moiré ως μέθοδος της Φωτογραμμετρίας Μικρών Αποστάσεων στη Βιοστερεομετρία. Διδακτορική Διατριβή. ΤΑΤΜ/ΕΜΠ.

Kraus, K. (1993). *Photogrammetry: Fundamentals and Standard Processes*, 4th ed.,Vol. 1, Dümmler, Bonn.

- Kraus, K. (2011). Photogrammetry: Geometry from Images and Laser Scans, 2nd edition, Walter de Gruyter, Berlin and New York.
- Κυπαρίσση, Σ. (2018). Σχετικός Προσανατολισμός Ζεύγους Σφαιρικών Εικόνων: Υλοποίηση και Αξιολόγηση Διαφορετικών Συναρτήσεων Σφάλματος. Μεταπτυχιακή εργασία, Πανεπιστήμιο Δυτικής Αττικής.
- Lembicz, B. W. (2006). Minimizing ground control when GPS photogrammetry isn't practical. In *ASPRS 2006 Annual Conference*, pp. 1-5.
- Lo, C. F., Tsai, M. L., Chiang, K. W., Chu, C. H., Tsai, G. J., Cheng, C. K., El-Sheimy, N. & Ayman, H. (2015). The direct georeferencing application and performance analysis of UAV helicopter in GCP-Free area. *The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences*, 40, 151-157. doi:10.5194/isprsarchives-XL-1-W4-151-2015
- Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S. & Gabbianelli, G.
 (2013). Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments. *Remote Sensing*, 5(12), 6880-6898. doi:10.3390/rs5126880
- Mian, O., Lutes, J., Lipa, G., Hutton, J. J., Gavelle, E. & Borghini, S. (2015). Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points. *The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences*, 40(1), 397-402. doi:10.5194/isprsarchives-XL-1-W4-397-2015.
- Milanlak, A. & Majdabadi, M. Gh. (2005). Optimal GCPs with onboard GPS. *Research Institute of the National Cartographic Center*, Iran.

Mlambo, R., Woodhouse, I. H., Gerard, F. & Anderson, K. (2017). Structure from

motion (SfM) Photogrammetry with drone data: a low cost method for monitoring greenhouse gas emissions from forests in developing countries. *Forests*, *8*(68), 1-20. doi:10.3390/f8030068

- Μωυσιάδης, Α. (2015). Στοιχεία Φωτογραμμετρίας Φωτοερμηνείας. Στο Κ. Περάκης, Α. Μωυσιάδης & Ι. Φαρασλής (Εκδ.). Η Τηλεπισκόπηση σε 13 ενότητες. Θεωρία, Μέθοδοι και Εφαρμογές (σσ. 25-48). Αθήνα: Ελληνικά Ακαδημαϊκά Ηλεκτρονικά Συγγράμματα και Βοηθήματα.
- Nasrullah, A. R. (2016). Systematic Analysis of Unmanned Aerial Vehicle (UAV) Derived Product Quality. M.Sc. Thesis, University of Twente.
- Oniga, V. E., Breaban, A. I., Pfeifer, N., & Chirila, C. (2020). Determining the Suitable number of ground control points for UAS images georeferencing by varying number and spatial distribution. *Remote Sensing*, *12*(5), 876, 1-23. doi:10.3390/rs12050876
- Πατιάς, Π. (1991). Εισαγωγή στη Φωτογραμμετρία. Θεσσαλονίκη: Εκδόσεις Ζήτη.
- Πέτσα, Ε. (2000). Θεμελιώδεις Έννοιες και Θεμελιώδη Προβλήματα της Φωτογραμμετρίας. ΤΕΙ Αθήνας, Τμήμα Τοπογραφίας.
- Πέτσα, Ε. (2010). *Αεροτριγωνισμός*. Πανεπιστημιακές Σημειώσεις Μαθήματος Φωτογραμμετρία ΙΙ, Αθήνα: ΤΕΙ Αθήνας, Τμήμα Τοπογραφίας.
- Petsa, E. & Grammatikopoulos, L. (2016). Photogrammetry & Computer Vision.
 Πανεπιστημιακές Σημειώσεις, Αθήνα: Κατεύθυνση Μηχανικών Τοπογραφίας
 & Γεωπληροφορικής, Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες».
- Przybilla, H. J., Bäumker, M., Luhmann, T., Hastedt, H. & Eilers, M. (2020).
 Interaction between direct georeferencing, control point configuration and camera self-calibration for RTK-based UAV photogrammetry. *The International Archives of Photogrammetry, Remote Sensing and Spatial Information*

Sciences, *43*, 485-492. doi.org/10.5194/isprs-archives-XLIII-B1-2020-485-2020

- Remondino, F., Barazzetti, L., Nex, F., Scaioni, M. & Sarazzi, D. (2011). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. *The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences*, 38(1/C22), 25-31.
- Rizaldy, A. & Firdaus, W. (2012). Direct georeferencing: A new standard in photogrammetry for high accuracy mapping. *The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences*, 39, 5-9.
- Şeker, D. Z. & Duran, Z. (2015). Terrestrial & Numerical Photogrammetry. Retrieved 10.09.2015.
- Stentoumis, C., Grammatikopoulos, L., Kalisperakis, I., Karras, G. & Petsa, E.
 (2015). Stereo matching based on census transformation of image gradients. In *Videometrics, Range Imaging, and Applications XIII*, 9528, pp. 1-11.
- Χατζόπουλος, Ι. Ν. (2015). Εισαγωγή στην Τοπογραφία & ΓΠΣ. Ανοιχτά Ακαδημαϊκά Μαθήματα από τη Μονάδα Υλοποίησης του Πανεπιστημίου Αιγαίου. Ανακτήθηκε από

https://eclass.aegean.gr/modules/document/file.php/ENV103/%CE%9511/11-Photogrammetry.pdf.

Ziemann, H. & El Hakim, S.F. (1982). On the definition of lens distortion reference data with odd power polynomials. *The International Archives of Photogrammetry*, 24 (1), 123-130.

Παραρτήματα

Παράρτημα Τεχνικών Προδιαγραφών Εξοπλισμού

Leica GS07

diess r Litt o the Alecc		
GNSS Technology	Leica RTKplus	Adaptive on-the-fly satellite selection
Leica SmartCheck	Continuous check of RTK solution	Reliability 99.95%
Signal tracking	SmartTrack	GPS (L1, L2, L2C, L5), Glonass (L1, L2, L3²), BeiDou (B1, B2, B3²), Galileo (E1, E5a, E5b, Alt-BOC, E6²), QZSS (L1, L2, L5, LEX²), NaviC L5³, SBAS (WAAS, EGNOS, MSAS, GAGAN)
Number of channels		320 hardware channels
MEASUREMENT PERFORMANCE & ACCUR	IACY ^I	
Time for initialisation		Typically 6 s
Real-time kinematic (Compliant to IS017123-8 standard)	Single baseline Network RTK	Hz 10 mm + 1 ppm / V 20 mm + 1 ppm Hz 10 mm + 0.5 ppm / V 20 mm + 0.5 ppm
Post processing	Static (phase) with long observations Static and rapid static (phase)	Hz 3 mm + 0.5 ppm / V 6 mm + 0.5 ppm Hz 5 mm + 0.5 ppm / V 10 mm + 0.5 ppm
Code differential	DGPS / RTCM	Typically 25 cm
COMMUNICATIONS		
Communication ports	Lemo Bluetooth®	USB and RS232 serial Bluetooth v2.00 + EDR, class 2
Communication protocols	RTK data protocols Network RTK	Leica, Leica 4G, CMR, CMR+, RTCM 2.2, 2.3, 3.0, 3.1, 3.2 MSM VRS, FKP, iMAX, MAC (RTCM SC 104)
Built-in data links ⁴	3.75G GSM / UMTS / CDMA phone modem Radio modem	Fully integrated, internal antenna Fully integrated, receive, external antenna 403 - 473 MHz, up to 28800 bps over air
External data links		Bluetooth GSM / GPRS / UMTS / LTE / CDMA phone modem
GENERAL		
Field controller and software	Leica Captivate software	Leica CS20 field controller
User interface	Buttons and LEDs	On / Off button, 3 status LEDs
Data recording	Storage ^s Data type and recording rate	Removable SD card, 8 GB Leica GNSS raw data and RINEX data at up to 5 Hz
Power management	Internal power supply External power supply Operation time ⁶	Exchangeable Li-Ion battery (2.6 Ah / 7.4 V) Nominal 12 V DC, range 10.5 - 28 V DC 8 h GNSS 7 h receiving RTK data with CS modem
Weight and dimensions	Weight Diameter x Height	$0.7\ kg$ / $2.7\ kg$ standard RTK rover setup on pole 186 mm x 71 mm
Environmental	Temperature Drop Proof against water, sand and dust Vibration Humidity Functional shock	-40 to 65°C operating, -40 to 80°C storage Withstands topple over from a 2 m survey pole onto hard surfaces 1966 / I/86 [IEG0529 / ML STD 810C CHG-1 510.6 I / ML STD 810G CHG-1 506.6 II / ML STD 810C CHG-1 512.6 I) Withstands strong vibration (IS09022-3-0.5 / ML STD 810G 514.6 Cat.24) 95% [IS09022-13-06 / IS09022-13-06 / ML STD 810G CHG-1 507.6 II) 40 g / 15 to 23 msec (ML STD 810G 516.6 I)

LEICA GS07 - GNSS SMART ANTENNA		
SUPPORTED GNSS SYSTEMS		
Dual-frequency / Multi-frequency	v/.	
GPS / GLONASS / Galileo / BeiDou / QZSS	VI.1.1.1V	
RTK PERFORMANCE		
DGPS/RTCM, RTK Unlimited, Network RTK	<i>v</i>	
POSITION UPDATE & DATA RECORDING		
5 Hz positioning	¥	
Raw data / RINEX data logging	v1v	
ADDITIONAL FEATURES ⁴		
3.75G GSM / GPRS / UMTS / CDMA phone modem		
UHF radio modem (receive only)	•	
		🖌 Standard 🔹 Optional

¹ Measurement precision, accuracy, reliability and time for initialisation are dependent upon various factors including number of satellites, observation time, atmospheric conditions, multipath etc. Figures quoted assume normal to favourable conditions. A full Belbou and Galileo constellation will further increase measurement performance and accuracy. ² Gonass 13, Belbou B3, QZSS LEX and Galileo E6 will be provided through future firmware upgrade.

³ Support of NavIC L5 is incorporated and will be provided through future firmware upgrade.
 ⁴ Depending on the used C5 field controller and radio modem.
 ⁵ Data is recorded to the C5 field controller.
 ⁶ Might vary with temperature, age of battery, transmit power of data link device.

Copyright Leica Geosystems AG, 9435 Heerbrugg, Switzerland. All rights reserved. Printed in Switzerland – 2018. Leica Geosystems AG is part of Hexagon AB. 870845en - 12.18

Leica Geosystems AG Heinrich-Wild-Strasse 9435 Heerbrugg, Switzerland +41 71 727 31 31

- when it has to be **right**

Leica FlexLine TS10

		Leica FlexLine TS10
	Absoluto continuous diamotricali	1" / 2" / 2" / 5"
	Displayer, Contained, Gamerickar Displayer resolution: 0.21" (0.1 mgon) Quadruple axis compensation Compensator setting accuracy?: 0.5" / 1"/ 1.5" Compensator range: +/- 4" Electronic level resolution: 2"	
STANCE MEASUREMENT	Circular level sensitivity: 6 / 2 mm	
ISTANCE MEASUREMENT	Dricm (CDD1_CDU1D): 1 5 m to 2 500 m	
ange	Prism GPR1 (Long Range mode) > 10.000 m	. 🗸
	R5003	~
ccuracy / leasurement time	Single prism Precise+ / Orce: 1 mm + 1.5 ppm (typical 2.4 s) Orce6763st. 2 mm + 1.5 ppm (typical 2.5) Continously: 3 mm + 1.5 ppm (typical < 0.15 s) A ver aging: 1 nm + 1.5 ppm Long Range mode / > 4 km: 5 mm + 2 ppm (typical 2.5 s)	<i>v</i>
	 0 m - 500 m : 2 mm + 2 ppm (typical 3 - 6 s) > 500 m : 4 mm + 2 ppm (typical 3 - 6 s) 	J.
iser dot size	 At 30 m: 7 mm x 10 mm At 50 m: 8 mm x 20 mm At 100 m: 16 mm x 25 mm 	~
elescope	Magnification: 30x Resolving power: 3" Focusing range: 1.55 m / 5.08 ft to infinity Field of view: 1230 / 1.66 eon / 2.7 m at 100 m	v
ENERAL		
	5" (inch), 800 x 480 pixels WVGA, colour and touch	
splay and keyboard	 25 keys³⁰ 37 keys with function keys⁵⁰ 	
	2 nd keyboard	and an an an an an and a set of the set of the set of the
	Key illumination	~
peration	 Endless drives for HZ & V Trigger-Key: user definable with 2 functions 	4
ower management	Exchangeable Lithium-Ion battery ⁶ Operating time with GEB361 Operating time with GEB331	up to 18 h up to 9 h
	Battery charging time with GKL31 Charger for GEB361 / GEB331 GKL311 charger for GEB361 / GEB331	3 h 30 min / 3 h 6 h 30 min / 3 h 30 min
	External supply voltage Nominal voltage 13.0 V DC & 16 W max	× .
ata storage	 Internal memory: 2 CB Flash Memory card: 5D card 1 CB or 8 GB USB memory stick: 1 GB 	~
ocessor	 ■ TI OMAP4430 1GHz Dual-core ARM® Cortex™ A9 MPCore™ ■ Operating system – Windows EC7 	v
terfaces	RS232 ⁷ , USB device	×
	Bluetooth@s, WLAN [®]	-
	Mobile Data sideCover: Li E-Modem for internet access	
uide Light (EGL)	 Position accuracy: 5 cm at 100 m Wavelength red /orange: 617 nm / 593 nm 	(R1000)
ser plummet aserclass 2)	Accuracy Plumb line deviation: 1.5 mm at 1.5 m instrument height Diameter of laser point: 2.5 mm at 1.5 m instrument height	~
utoHeight module for automatic strument height measurement aserclass 2)	Accuracy Distance accuracy: 1.0 mm (1 Sigma) Distance range: 0.7 m to 2.7 m	~
eight		4.4 - 4.9 kg
nvironmental pecifications ¹⁰	Working temperature range: -20°C to +50°C Arctic version: -35°C to +50°C Dust / Water (IEC 60529) / Humidity: IP66 / 95%, non-condensing	
naging	S megapixel CMOS sensor Overview camera with field of view 19.4°	

 Legend:
 1. 1° (Da mgon). 2° (Da mgon). 2° (Da mgon). 5° (La mgon).
 6. Distance/indio measurement eveny 30 seconds.
 \$\$ = included • = Optional \$\$ = Not available

 1. 1° (Da mgon). 2° (Da mgon). 3° (Da m

Laser radiation, avoid direct eye exposure. Class 38 laser product in accordance with IEC 60825-12014. The Bluetooth® trademarks are owned by Bluetooth SG, Inc. Windows is a registered trademark of Worcoaft Composition. Other trademarks and taker names are those of their respective owners. Copyright Leka Goosystem AG, 9435 Heelbrugg, Switzerland, All rights reserved. Printed in Struteriand – 2019, Leka Geosystems AG is part of theoreon AB, 87673340 – 11.19

Leica Geosystems AG Heinrich-Wild-Strasse 9435 Heerbrugg, Switzerland +41 71 727 31 31

- when it has to be **right**

UAV DJI Phantom 4 pro V2 της εταιρείας DJI

Weight (Battery&PropellersIncluded)	1388 g
DiagonalSize (PropellersExcluded)	350 mm
MaxAscentSpeed	S-mode: 6 m/s P-mode: 5 m/s
MaxDescentSpeed	S-mode: 4 m/s P-mode: 3 m/s
MaxSpeed	S-mode: 45 mph (72 kph) A-mode: 36 mph (58 kph) P-mode: 31 mph (50 kph)
MaxTiltAngle	S-mode: 42° A-mode: 35° P-mode: 25°
MaxAngularSpeed	S-mode: 250°/s A-mode: 150°/s
Max Service Ceiling Above Sea Level	19685 feet (6000 m)
MaxWindSpeedResistance	10 m/s
MaxFlightTime	Approx. 30 minutes
OperatingTemperatureRange	32° to 104°F (0° to 40°C)
SatellitePositioning Systems	GPS/GLONASS
Hover Accuracy Range	Vertical: ±0.1 m (with Vision Positioning) ±0.5 m (with GPS Positioning) Horizontal: ±0.3 m (with Vision Positioning) ±1.5 m (with GPS Positioning)
VisionSystem	
VisionSystem	Forward Vision System Backward Vision System Downward Vision System
VelocityRange	\leq 31 mph (50 kph) at 6.6 ft (2 m) above ground
AltitudeRange	0 - 33 feet (0 - 10 m)
OperatingRange	0 - 33 feet (0 - 10 m)
ObstacleSensoryRange	2 - 98 feet (0.7 - 30 m)

FOV	Forward: 60° (Horizontal), $\pm 27^{\circ}$ (Vertical) Backward: 60° (Horizontal), $\pm 27^{\circ}$ (Vertical) Downward: 70° (Front and Rear), 50° (Left and Right)
MeasuringFrequency	Forward: 10 Hz Backward: 10 Hz Downward: 20 Hz
OperatingEnvironment	Surface with clear pattern and adequate lighting (lux>15)
Camera	
Sensor	1'' CMOS Effective pixels: 20M
Lens	FOV 84° 8.8 mm/24 mm (35 mm format equivalent) f/2.8 - f/11 auto focus at 1 m - ∞
ISO Range	Video: 100 - 3200 (Auto) 100 - 6400 (Manual) Photo: 100 - 3200 (Auto) 100- 12800 (Manual)
MechanicalShutterSpeed	8 - 1/2000 s
ElectronicShutterSpeed	8 - 1/8000 s
ImageSize	3:2 Aspect Ratio: 5472 × 3648 4:3 Aspect Ratio: 4864 × 3648 16:9 Aspect Ratio: 5472 × 3078
PIV ImageSize	4096×2160(4096×2160 24/25/30/48/50p) 3840×2160(3840×2160 24/25/30/48/50/60p) 2720×1530(2720×1530 24/25/30/48/50/60p) 1920×1080(1920×1080 24/25/30/48/50/60/120p) 1280×720(1280×720 24/25/30/48/50/60/120p)
StillPhotographyModes	Single Shot Burst Shooting: 3/5/7/10/14 frames Auto Exposure Bracketing (AEB): 3/5 bracketed frames at 0.7 EV Bias Interval: 2/3/5/7/10/15/20/30/60 s
VideoRecordingModes	H.265 C4K:4096×2160 24/25/30p @100Mbps 4K:3840×2160 24/25/30p @100Mbps 2.7K:2720×1530 24/25/30p @65Mbps 2.7K:2720×1530 48/50/60p @80Mbps FHD:1920×1080 24/25/30p @50Mbps

	FHD:1920×1080 48/50/60p @65Mbps FHD:1920×1080 120p @100Mbps HD:1280×720 24/25/30p @25Mbps HD:1280×720 48/50/60p @35Mbps HD:1280×720 120p @60Mbps
	H.264 C4K:4096×2160 24/25/30/48/50/60p @100Mbps 4K:3840×2160 24/25/30/48/50/60p @100Mbps 2.7K:2720×1530 24/25/30p @80Mbps 2.7K:2720×1530 48/50/60p @100Mbps FHD:1920×1080 24/25/30p @60Mbps FHD:1920×1080 48/50/60 @80Mbps FHD:1920×1080 120p @100Mbps HD:1280×720 24/25/30p @30Mbps HD:1280×720 48/50/60p @45Mbps HD:1280×720 120p @80Mbps
MaxVideoBitrate	100 Mbps
SupportedFile Systems	FAT32 (≤32 GB); exFAT (>32 GB)
Photo	JPEG, DNG (RAW), JPEG + DNG
Video	MP4/MOV (AVC/H.264; HEVC/H.265)
Supported SD Cards	Micro SD Max Capacity: 128GB Write speed ≥15MB/s, Class 10 or UHS-1 rating required
OperatingTemperatureRange Charger	32° to 104°F (0° to 40°C)
Voltage	17.4 V
RatedPower	100 W
App / Live View	
MobileApp	DJI GO 4
Live ViewWorkingFrequency	2.4 GHz ISM, 5.8 GHz ISM
Live View Quality	720P @ 30fps
Latency	Phantom 4 Pro: 220 ms (depending on conditions and mobile device) Phantom 4 Pro + : 160 - 180 ms
Gimbal	
Stabilization	3-axis (pitch, roll, yaw)

ControllableRange	Pitch: -90° to $+30^{\circ}$
MaxControllableAngularSpeed	Pitch: 90°/s
AngularVibrationRange InfraredSensingSystem	±0.02°
ObstacleSensoryRange	0.6 - 23 feet (0.2 - 7 m)
FOV	70° (Horizontal), ±10° (Vertical)
MeasuringFrequency	10 Hz
OperatingEnvironment	Surface with diffuse reflection material, and re- flectivity > 8% (such as wall, trees, humans, etc.)
RemoteController	
OperatingFrequency	2.400 - 2.483 GHz and 5.725 - 5.825 GHz
MaxTransmissionDistance	 2.400 - 2.483 GHz (Unobstructed, free of interference) FCC: 4.3 mi (7 km) CE: 2.2 mi (3.5 km) SRRC: 2.5 mi (4 km) 5.725 - 5.825 GHz (Unobstructed, free of interference) FCC: 4.3 mi (7 km) CE: 1.2 mi (2 km) SRRC: 3.1 mi (5 km)
OperatingTemperatureRange	32° to 104°F (0° to 40°C)
Battery	6000 mAhLiPo 2S
TransmitterPower (EIRP)	2.400 - 2.483 GHz FCC: 26 dBm CE: 17 dBm SRRC: 20 dBm MIC: 17 dBm 5.725 - 5.825 GHz FCC: 28 dBm CE: 14 dBm SRRC: 20 dBm MIC: -
OperatingCurrent/Voltage	1.2 A@7.4 V
VideoOutputPort	GL300E: HDMI GL300F: USB
MobileDeviceHolder	GL300E: Built-in display device (5.5 inch screen, 1920×1080, 1000 cd/m2, Android system, 4 GB

RAM+16 GB ROM) GL300F: Tablets and smart phones

IntelligentFlightBattery	
Capacity	5870 mAh
Voltage	15.2 V
BatteryType	LiPo 4S
Energy	89.2 Wh
NetWeight	468 g
ChargingTemperatureRange	41° to 104°F (5° to 40°C)
MaxChargingPower	160 W

TECHNICAL SPECIFICATIONS

DRONE

- Size folded: 244x67x65mm
- Size unfolded: 175x240x65mm
- Weight: 320g
- Max transmission range: 4km with controller
- Max flight time: 25min
- Max harizonta: speed: 15m/s
- Max vertical speed: 4m/s
- Max wind resistance: 50km/h
- Service ceiling: 4500m above sea level
- Operating temperature range: -10°C to 40°C
- Satellite Positioning Systems: GPS & GLONASS

SMART BATTERY

- Type: High density Lipo (2 cells)
- Battery capacity: 2700mAh
- Battery life: 25min
- · Charging port: USB-C
- Weight: 126g
- Voltage: 7.6V
- Max charging power: 24W

CONTROLLER

- Size folded: 94x152x72mm
- Size unfolded: 153x152x116mm
- Weight: 386g
- Transmission system: Wi-Fi 802.11a/b/g/n
- Operating frequencies: 2.4 GHz 5.8 GHz
- Max transmission range: 4Km
- Live streaming resolution: HD 720p
- Battery capacity: 2500mAh 3,6V
- Battery life: 2h30 (Android) / 5h30 (iOS)
- Supported mobile devices: screen size up to 6"
- USB ports: USB-C (Charge), USB-A (Connection)

IMAGING SYSTEM

- Sensor: 1/2.4" CMOS
- · Lens:
- ASPH (Sharper images) - Aperture: f/2.4
- Focal length (35mm format equivalent):
- 23-59mm (photo), 26-78mm (video)
- Oepth of field: 1.5m ∞
- Shutter speed: electronic shutter 1 to 1/10000s
- ISO range: 100-3200
- Video resolution:
- 4K Cinema 4096x2160 24fps
- 4K UHD 3840x2160 24/25/30fps
- FHD 1920x1080 24/25/30/48/50/60fps
- Video HFOV: 69°
- Max video bitrate: 100 Mbps
- Video format: MP4 (H264)
- Digital zoom:
- Lossless: up to 2.8x (FHD) & 1.4x (4K UHD) - Standard: up to 3x (4K Cinema, 4K UHD, FHD)
- Photo resolution:
- Wide: 21MP (5344x4016) / 4:3 / 84° HFOV
- Rectilinear: 16MP (4608x3456) / 4:3 / 75.5° HFOV
- Photo formats: JPEG, DNG (RAW)
- HDR: 4K UHD video

IMAGE STABILIZATION

- · Stabilization:
- 3-axis hybrid Mechanical: 2-axis Roll/Tilt angles
- Electronic (EIS): 3-axis Roll/Pan/Tilt angles
- Controllable tilt range: 90° to +90° (180° total)

67mm

152mm

PACK CONTENT

ANAFI DRONE / SMART BATTERY / PARROT SKYCONTROLLER 3 / CARRYING CASE / 1668 MICROSD CARD USB-A TO USB-C CABLE / 8 ADDITIONAL PROPELLER BLADES / MOUNTING TOOL

PARROT DRONES SAS - RCS PARIS 808 408 704 174 qual de Jemmapes 75010 Paris - FRANCE - WWW.PARRDT.COM

Parrot and Parrot logo are trademarks or registered trademarks of Parrot SA, used under license therefrom.

Anafi and its logo are trademarks or registered trademarks of Parrot Dranes SAS.

Parrot

EVERYDAY LIFE.ELEVATED

Air Surveyor 4

www.drone-services.gr

UAV PPK Solution technical Data for Georeference Photo

Tersus BX316D GNSS RTK

Single Antenna	
GPS	L1/L2
GLONASS	L1/L2
BeiDou	B1/B2

Single Point Positioning Accuracy (RMS)

- Horizontal	1.5m
- Vertical	3.0m

Observation

C/A Code (zenith direction)	10cm
P Code (zenith direction)	10cm
Carrier Phase (zenith direction)	1mm
Heading 1m Baseline (RMS)	0.15°

Performance		
Time to First Fix		
- Cold Start	<50s	
- Warm Start	<30s	
Timing Accuracy (RMS)		20ns
Velocity Accuracy (RMS)		0.03m/s
Initialization (typical)		<10s
Initialization Reliability	7	>99.9%

Data	
Correction	RTCM 2.x/3.x/CMR/CMR+
Output	NMEA-0183; Tersus Binary Format
Max. Update Rate	20Hz
Log & Command Compatible	NovAtel Protocol
Storage	In-built 4GB memory

Specifications Cube Orange With ADSB-In

Processor

32bit ARM® STM32H743 Cortex®-M7 (with DP-FPU) 400 Mhz/1 MB RAM/2 MB Flash 32 bit STM32F103 failsafe co-processor

Sensors

Three redundant IMUs (accels, gyros and compass) ICM 20649 integrated accelerometer / gyro, MS5611 barometer on base board InvenSense ICM20602 IMU,ICM20948 IMU/MAG, MS5611 barometer on temperature controlled, vibration isolated board All sensors connected via SPI.

Power

Redundant power supply with automatic failover Servo rail high-power (7 V) and high-current ready All peripheral outputs over-current protected, all inputs ESD protected

Interfaces 14x PWM servo outputs (8 from IO, 6 from FMU) S.Bus servo output R/C inputs for CPPM, Spektrum / DSM and S.Bus Analogue / PWM RSSI input 5x general purpose serial ports, 2 with full flow control 2x I2C ports SPI port (un-buffered, for short cables only not recommended for use) 2x CAN Bus interface 3x Analogue inputs (3.3V and 6.6V) High-powered piezo buzzer driver (on expansion board) High-power RGB LED (I2C driver compatible connected externally only) Safety switch / LED Optional carrier board for Intel Edison (now obsolete)

Physical & ElectricalSize108 x 54 x 12mmWeight44gInput Voltage5V~12V DCPower Consumption (typical)3.5WActive Antenna Input Impedance50ΩAntenna ConnectorSMA female x2COM Baud RateUp to 921600bpsOperating Temperature-40°C ~ +85°C

Data StorageIn-built 4GB memory CorrectionRTCM 2.x/3.x/CMR/CMR+ OutputNMEA-0183; Tersus Binary Format Max. Update Rate20Hz Log & Command CompatibleNovAtel Protocol

Τεχνικές Προδιαγραφές

Αυτόνομη πτήση	Ναι
Αυτόματη απογείωσή και προσγείωσή	Ναι
Θύρες για μελλοντική χρήση	Nai (6 servo)
Διαστάσεις	Ø 63 cm, H 28 cm
Έλικες	4x 13'4.5 fold
Επείγουσα προσγείωση	Yes
Νομική προστασία	Προαιρετικά
FlightControl 32 bit	Ναί
Flightdatalog	128 Hz
Αισθητήρες	16 bit gyroscope 14 bit accelerometer / magnetometer 3-axis accelerometer/gyroscope Barometer
GPS flight assistant (position Hold, Coming Home)	Ναί
L1 GPS/L1+L2	Προαιρετικά
Μέγιστη ταχύτητα	30 km/h
Μέγιστος χρόνος πτήσης (μέση τιμή) με πλήρη φορτίο σε συνθήκες αποτύπωσης	20 min (1x 6S battery pack)
Μέγιστο φορτίο	1000 gr
Βάρος με camera και μπαταρία	3650gr
Αντοχή σε αέρα	10-12 m/s
Κάμερα	 Sony A6000 Αισθητήρας Exmor® APS HD CMOS 24,3MP με σύστημα BIONZ XTM Ευέλικτο σύστημα εναλλάξιμων φακών E-mount Γρήγορη υβριδική αυτόματη εστίαση (ανί-χνευση φάσης και αντίθεσης)